
Data Structures
Time Complexity and Formal Notations

Hikmat Farhat

May 31, 2018

Hikmat Farhat Data Structures May 31, 2018 1 / 65

Efficient Algorithms

Given an algorithm to solve a problem we ask

Is it efficient?

We seek a sensible definition of efficiency

How much work if the input doubles in size?

For large input sizes can our algorithm solve the problem in a
reasonable time?

Hikmat Farhat Data Structures May 31, 2018 2 / 65

Polynomial Time

Efficient algorithm = polynomial in the size of the input

Definition

Polynomial Time: for every input of size n
∃a, b such that number of computation steps < anb

a and b are constants that do not depend on n

True, some algorithms are polynomials with a and/or b very large

but for the majority of algorithms, a and d are relatively small

Hikmat Farhat Data Structures May 31, 2018 3 / 65

Why Polynomial Time ?

Hikmat Farhat Data Structures May 31, 2018 4 / 65

Worst Case Analysis

Usually the running time is the running time of the worst case

One could analysis the average case but it much more difficult and
depends on the chosen distribution.

Therefore an algorithm is efficient if it has a worst case polynomial
time

There are exceptions the most important being the simplex algorithm
that works very well in practice

Hikmat Farhat Data Structures May 31, 2018 5 / 65

Informal Example: Union Find

We will introduce the cost of algorithms informally by an example:
union find.

We have a set of n points and a set of m connections between these
points.

For any two points p and q we would like to answer the questions: is
there a path from p to q?

Three different algorithms, with different costs, will be presented to
solve the above problem.

Hikmat Farhat Data Structures May 31, 2018 6 / 65

Union Find: attempt number 1

The basic idea is to associate an identifier with every point, so we
maintain an array id [n].

The identifier of a given point is the group the point belongs to.
Initially there are n group with one point in each, namely id [i] = i

When two points, p and q, are found to be connected their respective
groups are merged (union).

Hikmat Farhat Data Structures May 31, 2018 7 / 65

The find function

the function Find(p) returns the group id that p belongs to

Instuctions cost times

Find (p) c0 1
Return id [p] c 1

therefore the cost of function find(p) is constant (i.e. independent of
the number of points)

Hikmat Farhat Data Structures May 31, 2018 8 / 65

Instructions cost times

1 Union (p,q) c0 1
2 idp ← Find(p) c1 1
3 idq ← Find(q) c1 1
4 if idp = idq then c2 1
5 Return c3 1
6 for i = 0 to n − 1 do c4 n + 1
7 if id [i] = idp then c5 n
8 id [i]← idq c6 tp
9 count ← count − 1 c7 1
10 Return c3 1

Whe p = q the cost of Union is c0 + 2c1 + c2 + c3 = A and when
p 6= q the total cost of Union is

c0 + 2c1 + c2 + c4(n + 1) + c5n + c6tp + c7 + c3

Which can be written as B + Cn + c6tp where B and C are constants
and tp is evaluated next

Hikmat Farhat Data Structures May 31, 2018 9 / 65

Computational Cost

How much does it ”cost” to run Find and Union when we have n
points?

For Find we already calculated it, it is a constant, d0 + d1,
independent of the number of points.

For Union, we still need to calculated tp which is the number of times
line 8 is executed.

Line 8 is executed at least once since we know that at least
id [p] = idp.

Also, line 8 is executed at most n − 1 times because at least
id [q] 6= idp.

Therefore 1 ≤ tp ≤ n − 1. Inserting the value of tp in the previous
calculation for Union we get:
B + Cn + c6 ≤ Cost ≤ (B − c6) + (C + c6)n

Rearranging terms we get

α + βn ≤ Cost ≤ γ + δn

Hikmat Farhat Data Structures May 31, 2018 10 / 65

Quick Union

A different approach is to organize all related points in a tree
structure.

Two points belong to the same group iff they belong to the same tree.

A tree is uniquely identified by its root.

The array id [] has a different meaning: id [i] = k means that site k is
the parent of site i .

Only the root of a tree has the property id [i] = i ;

In this case find(p) returns the root of the tree that p belongs to.

Hikmat Farhat Data Structures May 31, 2018 11 / 65

Quick Union Pseudo Code

Find(p)

while id [p] 6= p do
p = id [p]

end
return p

Union(p,q)

proot ← Find(p)
qroot ← Find(q)
if proot = qroot then

return
end
id [proot]← qroot
count ← count − 1

Hikmat Farhat Data Structures May 31, 2018 12 / 65

Quick Union Cost

The cost of Find(p) is 2d + 1 where d is the depth of node p.

This means that the cost of Union(p, q) is between
(2dp + 1) + (2dq + 1) + 1 and (2dp + 1) + (2dq + 1) + 3.

The problem is that in some cases the tree degenerates into a linear
list.

In that case the height=size and instead of getting log n behavior we
get n.

To avoid such a situation we try to keep the trees balanced.

We do this by always attaching the small tree to the large one.

to this end we introduce a variable tsize initialized to 1.

Hikmat Farhat Data Structures May 31, 2018 13 / 65

Union Find: take 3

Union(p,q)

proot ← Find(p)
qroot ← Find(q)
if proot = qroot then

return
end
if tsize[proot] > tsize[qroot] then

id [qroot]← proot
tsize[proot]← tsize[proot] + tsize[qroot]

else
id [proot]← qroot
tsize[qroot]← tsize[proot] + tsize[qroot]

end
count ← count − 1

Hikmat Farhat Data Structures May 31, 2018 14 / 65

Weighted Quick Union

We have shown that in the quick union version UnionFind, ”find(p)”
costs 2d + 1 where d is the depth of node p.

we will now show that during the computation of the weighted quick
union for N sites, the depth of ANY node is at most log N.

It is sufficient to show that the height of ANY tree of size k is at
most log k (this is not the case in the original quick union where the
height can be up to k − 1)

Hikmat Farhat Data Structures May 31, 2018 15 / 65

Proof

By induction on the size of the tree.

Base case: k = 1 then there is only one node and the height is
log k = 0.

Assume that for any tree, T of size i < n, the height of T , hi is at
most log i and consider two trees of size i ≤ j .

So we have hi ≤ log i and hj ≤ log j .

Hikmat Farhat Data Structures May 31, 2018 16 / 65

The size of the combined tree is i + j = k .

Using the weighted quick union method we know that the height of
the combined tree is at most max(1 + log i , log j) (why?)

in the first case 1 + log i = log 2i ≤ log(i + j) = log k

in the second case log j ≤ log(i + j) = log k .

Hikmat Farhat Data Structures May 31, 2018 17 / 65

Asymptotic Growth of Functions

Definition

Big Oh:The set O(g(n)) is defined as all functions f (n) with the property
∃c , n0 such that f (n) ≤ cg(n) for all n ≥ n0

Lecture Notes for Chapter 3:
Growth of Functions

Chapter 3 overview

• A way to describe behavior of functions in the limit. Weíre studying asymptotic
efficiency.

• Describe growth of functions.
• Focus on whatís important by abstracting away low-order terms and constant
factors.

• How we indicate running times of algorithms.
• A way to compare ìsizesî of functions:

O ≈ ≤
! ≈ ≥
" ≈ =
o ≈ <
ω ≈ >

Asymptotic notation

O-notation

O(g(n)) = { f (n) : there exist positive constants c and n0 such that
0 ≤ f (n) ≤ cg(n) for all n ≥ n0} .

n0
n

f(n)

cg(n)

g(n) is an asymptotic upper bound for f (n).
If f (n) ∈ O(g(n)), we write f (n) = O(g(n)) (will precisely explain this soon).

Figure : Graphical definition of O taken from the CLRS book

Hikmat Farhat Data Structures May 31, 2018 18 / 65

Example

f (n) = 2n2 + n = O(n2) because let c = 3 and n0 = 1

∀n ≥ n0 = 1

n ≤ n2

2n2 + n ≤ 3n2

f (n) ≤ cn2

f (n) = O(n2)

On the other hand f (n) = 2n2 + n 6= O(n)

Hikmat Farhat Data Structures May 31, 2018 19 / 65

Definition

Big Omega:The set Ω(g(n)) is defined as all functions f (n) with the
property
∃c , n0 such that f (n) ≥ cg(n) for all n ≥ n0

3-2 Lecture Notes for Chapter 3: Growth of Functions

Example: 2n2 = O(n3), with c = 1 and n0 = 2.
Examples of functions in O(n2):

n2
n2 + n
n2 + 1000n
1000n2 + 1000n
Also,
n
n/1000
n1.99999
n2/ lg lg lg n

!-notation

!(g(n)) = { f (n) : there exist positive constants c and n0 such that
0 ≤ cg(n) ≤ f (n) for all n ≥ n0} .

n0
n

f(n)

cg(n)

g(n) is an asymptotic lower bound for f (n).

Example:
√
n = !(lg n), with c = 1 and n0 = 16.

Examples of functions in !(n2):

n2
n2 + n
n2 − n
1000n2 + 1000n
1000n2 − 1000n
Also,
n3
n2.00001
n2 lg lg lg n
22n

"-notation

"(g(n)) = { f (n) : there exist positive constants c1, c2, and n0 such that
0 ≤ c1g(n) ≤ f (n) ≤ c2g(n) for all n ≥ n0} .

Figure : Graphical definition of Ω taken from the CLRS book

Hikmat Farhat Data Structures May 31, 2018 20 / 65

Example

Consider f (n) =
√

n and g(n) = log n.

f (n) = Ω(g(n)) because for c = 1, n0 = 16 we have

√
16 = 4 = log 24

Note that between n=4 and n=16 the value of log2 n ≥
√

n

Hikmat Farhat Data Structures May 31, 2018 21 / 65

Hikmat Farhat Data Structures May 31, 2018 22 / 65

Abuse of notation: if h(n) ∈ O(g(n)) we write h(n) = O(g(n))

similarly if h(n) ∈ Ω(g(n)) we write
h(n) = Ω(g(n))

If h(n) = O(g(n)) we say g(n) is an upper bound for f (n).

If h(n) = Ω(g(n)) we say g(n) is a lower bound for f (n).

Hikmat Farhat Data Structures May 31, 2018 23 / 65

Definition

Big Θ:The set Θ(g(n)) is defined as all functions f (n) with the property
∃c1, c2, n0 such that c1g(n) ≤ f (n) ≤ c2g(n) for all n ≥ n0Lecture Notes for Chapter 3: Growth of Functions 3-3

n0
n

f(n)

c1g(n)

c2g(n)

g(n) is an asymptotically tight bound for f (n).

Example: n2/2− 2n = !(n2), with c1 = 1/4, c2 = 1/2, and n0 = 8.

Theorem
f (n) = !(g(n)) if and only if f = O(g(n)) and f = "(g(n)) .

Leading constants and low-order terms donít matter.

Asymptotic notation in equations

When on right-hand side: O(n2) stands for some anonymous function in the set
O(n2).
2n2+3n+1 = 2n2+!(n)means 2n2+3n+1 = 2n2+ f (n) for some f (n) ∈ !(n).
In particular, f (n) = 3n + 1.
By the way, we interpret # of anonymous functions as = # of times the asymptotic
notation appears:
n∑

i=1
O(i) OK: 1 anonymous function

O(1) + O(2) + · · · + O(n) not OK: n hidden constants
⇒ no clean interpretation

When on left-hand side: No matter how the anonymous functions are chosen on
the left-hand side, there is a way to choose the anonymous functions on the right-
hand side to make the equation valid.
Interpret 2n2 + !(n) = !(n2) as meaning for all functions f (n) ∈ !(n), there
exists a function g(n) ∈ !(n2) such that 2n2 + f (n) = g(n).
Can chain together:
2n2 + 3n + 1 = 2n2 + !(n)

= !(n2) .

Interpretation:
• First equation: There exists f (n) ∈ !(n) such that 2n2+3n+1 = 2n2+ f (n).
• Second equation: For all g(n) ∈ !(n) (such as the f (n) used to make the first
equation hold), there exists h(n) ∈ !(n2) such that 2n2 + g(n) = h(n).

Figure : Graphical definition of Θ taken from the CLRS book

Hikmat Farhat Data Structures May 31, 2018 24 / 65

Example

Consider c1 = 1, c2 = 3 and n0 = 1 it is obvious that

c1n2 ≤ 2n2 + n ≤ c2n2 ∀n ≥ n0

We can show that f (n) = Θ(g(n)) iff
f (n) = O(g(n)) and
f (n) = Ω(g(n))

If f (n) = Θ(g(n)) we say g(n) is a tight bound for f (n).

Hikmat Farhat Data Structures May 31, 2018 25 / 65

Definition

Little Oh: The set o(g(n)) is defined as all functions f (n) with the property
for all c, ∃n0 such that
f (n) < cg(n) for all n ≥ n0

We can show that the above definition is equivalent to

lim
n→∞

f (n)

g(n)
= 0

Hikmat Farhat Data Structures May 31, 2018 26 / 65

Definition

Little omega: The set ω(g(n)) is defined as all functions f (n) with the
property
for all c, ∃n0 such that
cg(n) < f (n) for all n ≥ n0

We can show that the above definition is equivalent to

lim
n→∞

f (n)

g(n)
=∞

Hikmat Farhat Data Structures May 31, 2018 27 / 65

Examples

f (n) = 2n2 + n

f (n) = ω(n) because

lim
n→∞

2n2 + n

n
=∞

f (n) = o(n3) because

lim
n→∞

2n2 + n

n3
= 0

Hikmat Farhat Data Structures May 31, 2018 28 / 65

Using Limits

Sometimes it is easier to determine the relative growth rate of two
functions f (n) and g(n) by using limits

I if limn→∞
f (n)
g(n) = 0 then f (n) = o(g(n)).

I if limn→∞
f (n)
g(n) =∞ then f (n) = ω(g(n)).

I if limn→∞
f (n)
g(n) = c , for some constant c , then f (n) = Θ(g(n)).

Can we always do that?No

In many situations the complexity cannot be written in an analytic
form.

Hikmat Farhat Data Structures May 31, 2018 29 / 65

Exponential vs Polynomial vs Logarithmic

it is easy to show that for all a > 0 ,b > 1

lim
n→∞

na

bn
= 0

And polynomials grow faster(use m = log n and the previous result) than
logarithms (loga x = (log x)a)

lim
n→∞

loga n

nb
= 0

Hikmat Farhat Data Structures May 31, 2018 30 / 65

Arithmetic Properties

transitivity: if f (n) = O(g(n)) and g(n) = O(h(n)) then
f (n) = O(h(n)).

I eg: log n = O(n) and n = O(2n) then log n = O(2n).

constant factor: if f (n) = O(kg(n)) for some k > 0 then
f (n) = O(g(n)).

I eg: n2 = O(3n2) thus n2 = O(n2).

sum: if f1(n) = O(g1(n)) and f2(n) = O(g2(n)) then
f1(n) + f2(n) = O(max(g1(n), g2(n)))

I 3n2 = O(n2), 6 log n = O(log n) then 3n2 + 6 log n = O(n2)

product:f1(n) = O(g1(n)) and f2(n) = O(g2(n)) then
f1(n) ∗ f2(n) = O(g1(n) ∗ g2(n))

I eg: 3n2 = O(n2), 6 log n = O(log n) then 3n2 ∗ 6 log n = O(n2 log n)

Hikmat Farhat Data Structures May 31, 2018 31 / 65

Code Fragments

sum = 0
for i = 1 . . . n do

sum← sum + 1
end

the operation sum = 0 is independent of the input thus it costs a
constant time c1.

the operation sum← sum + 1 is independent of the input thus it cost
some constant time c2.

Regardless of the input the loop runs n times therefore the total cost
is c1 + c2n = Θ(n).

Hikmat Farhat Data Structures May 31, 2018 32 / 65

The algorithm below for finding the maximum of n numbers is Θ(n).
Input: a1, . . . , an
Output: max(a1, . . . , an)

Initially max = a1
for i = 2 . . . n do

if ai > max then
max = ai

end

end

Try 89,47,80,50,67,102 and 19,15,13,10,8,3

Do they have the ”same” running time?

Hikmat Farhat Data Structures May 31, 2018 33 / 65

Sequential Search

Given an array a check if element x is in the array.

for i = 1 . . . n do
if a[i] = x then

return True
end

end
return False

What is the running time of the above algorithm?

Consider the two extreme cases: x is the first or the last element of
the array.

Hikmat Farhat Data Structures May 31, 2018 34 / 65

If x is the first element than we perform a single operation. This is
the best-case.

If x is the last element than we perform n operation.This is the
worst-case.

Now if we run the algorithm on many different (random) input and
average out the results we get the average-case.

Which one do we use?
I Depends on the application and the feasibility.
I Real-time and critical applications usually require worst-case
I In most other situations we prefer average-case, but difficult to

calculate and depends on the random distribution!

In light of the above, what is the best-case,average-case and
worst-case for the compute max algorithm we had before?

Hikmat Farhat Data Structures May 31, 2018 35 / 65

Nested Loops

What is the complexity of nested loops?

The cost of a stmt in a nested loop is the cost of the statement
multiplied by the product of the size of the loops

for i = 1 . . . n do
for j = 1 . . .m do

k ← k + 1
end

end

The cost is O(n ∗m)

Hikmat Farhat Data Structures May 31, 2018 36 / 65

Factorial

Consider the recursive implementation of the factorial function.
factorial(n)

if n=1 then
return 1

else
return n*factorial(n-1)

end

The cost of size n? T (n) = T (n − 1) + C

Thus T (n) = Θ(n).

Hikmat Farhat Data Structures May 31, 2018 37 / 65

Complexity of Factorial

T (n) = T (n − 1) + C

= T (n − 2) + 2C

= . . .

= T (n − i) + i ∗ C

= . . .

= T (1) + (n − 1) ∗ C

= n ∗ C + T (1)− C

= Θ(n)

Hikmat Farhat Data Structures May 31, 2018 38 / 65

Fibonacci

Computing the nth Fibonacci number can be done recursively
fib(n)

if n = 0 then
return 0

end
if n = 1 then

return 1
end
return fib(n-1)+fib(n-2)

If T (n) is the cost of computing Fib(n) then

T (n) = T (n − 1) + T (n − 2) + 3

We will show, by induction on n, that T (n) ≥ fib(n) i.e. the cost of
computing Fibonacci number n is greater than the number itself.

Hikmat Farhat Data Structures May 31, 2018 39 / 65

We are assuming that all operations cost the same so the 3 comes
from executing the two if stmts and the sum.

First the base cases. If n = 0 then the algorithm costs 1 (if stmt), if
n = 1 it costs 2 (2 if stmts) thus T (0) = 1, T (1) = 2.

In the other cases we have T (n) = T (n − 1) + T (n − 2) + 3. This
means T (2) = 6 ≥ fib(2) = 1.

Assume that T (n) ≥ fib(n) then

T (n + 1) = T (n) + T (n − 1) + 3

≥ fib(n) + fib(n − 1) hyp.

≥ fib(n + 1)

One can show that (for n ≥ 5) fib(n) ≥ (3/2)n thus T (n) ≥ (3/2)n

which is exponential!

Hikmat Farhat Data Structures May 31, 2018 40 / 65

Fibonacci: take two

can we compute Fibonacci numbers more efficiently?

It turns out yes. By just ”remembering” the values we already
computed.

A simple iterative algorithm

FiboIter(n)
f [0]← 0
f [1]← 1
for i ← 2 to n do

f [i]← f [i − 1] + f [i − 2]
end

Hikmat Farhat Data Structures May 31, 2018 41 / 65

Comparison

We had two different algorithms to compute Fibonacci number n

One was Ω((3/2)n) while the other was O(n).

In the first one we did not need to ”save” anything.

In the second algorithm we used an array of size n: space
complexity: O(n).

This is a trade off between time and space.

Obviously in this case the trade off is worth it.

Hikmat Farhat Data Structures May 31, 2018 42 / 65

Exponentiation

Exponentiation is another example where the simplest algorithm is
much less than optimal.

The simplest way to compute xn is x . . . x︸ ︷︷ ︸
n times

therefore the complexity of the above algorithm is Θ(n).

We can do (much) better by observing that

if n is even then xn = (xn/2)2

if n is odd then xn = (xn/2)2 · x
Note the integer division, n/2 ≡ bn/2c, e.g. 7/2=3

Hikmat Farhat Data Structures May 31, 2018 43 / 65

Implementation

i n t power (i n t x , i n t n){
i f (n==0) r e t u r n 1 ;
i n t h a l f=power (x , n / 2) ;
h a l f=h a l f ∗ h a l f ;
i f ((n%2)!=0) h a l f=h a l f ∗x ;
r e t u r n h a l f ;

}

Hikmat Farhat Data Structures May 31, 2018 44 / 65

Complexity of Exponentiation

The analysis is simplified by assuming n = 2k (other cases are similar,
albeit more complicated)

Assume: n/2, half ∗ half and the if stmt each costs 1.

for a total of 4 (including the test for x==0) when n is even and 5
when it is odd.

Let T (n) be the computational cost for xn then

T (n) = T (n/2) + 4

= T (n/4) + 8

= T (n/2i) + 4i

= . . .

= T (1) + 4k

= Θ(k) = Θ(log n)

Hikmat Farhat Data Structures May 31, 2018 45 / 65

Exponentiation

In the general case we perform one extra computation every time the
exponent is odd.

Let β(n) be the number of times such computation is performed.

It is easy to check that β(n) = is one less than the number of 1’s in
the binary representation of n

For example if n = 21 then 21→ 10→ 5→ 2→ 1 which means the
intermediate value is odd twice.

Compare with the binary representation 21 = 1011.

Clearly β(n) is at most equal to the number of bits in the binary
representation of n which is blog nc
So even in the general case the complexity is Θ(log n).

Hikmat Farhat Data Structures May 31, 2018 46 / 65

General case

In general the problem has the following recursion relation

T (n) = T (bn/2c) + 4 + (n mod 2)

We will show that the general form

T (n) = T (bn/2c) + M + (n mod 2) (1)

Has solution

T (n) = Mblog nc+ β(n) (2)

Where β(n) is the number of 1’s in the binary representation of n.

Using the fact that blogbn/2cc = blog nc − 1 it is easy to check that
(2) satisfies (1).

Hikmat Farhat Data Structures May 31, 2018 47 / 65

Fibonacci: Take Three

The previous method for exponentiation can be used to compute
Fibonacci (n) in O(log n).

The key is that (
Fn+1 Fn

Fn Fn−1

)
=

(
1 1
1 0

)n

The above is shown by induction on n.

We know how to compute the power in log n.

Hikmat Farhat Data Structures May 31, 2018 48 / 65

Maximum Subarray Sum

Given an array A of n elements we ask for the maximum value of

j∑
k=i

Ak

For example if A is -2,11,-4,13,-5,-2 then the answer is 20 =
∑4

k=2

Hikmat Farhat Data Structures May 31, 2018 49 / 65

Brute Force
Compute the sum of all subarrays of an array A of size n and return
the largest.
A subarray starts at index i and ends at index j where 0 ≤ i < n and
0 ≤ j < n.
Therefore for each possible i and j compute the sum of A[i] . . .A[j].

i n t maxSubarray (i n t ∗A, i n t n){
i n t sum=0, max=A [0] ;

f o r (i n t i =0; i<n ; i ++){
f o r (j=i ; j<n ; j ++){

sum=0;
f o r (i n t k=i ; k<=j ; k++)

sum+=A [k] ;
i f (max<sum) max=sum ;

}
}

r e t u r n max ;
}

Hikmat Farhat Data Structures May 31, 2018 50 / 65

Complexity

To determine the complexity of the brute force approach we can see
that there are 3 nested loop therefore the complexity of the problem
depends on how many times line 14 is executed

The number of executions is

n−1∑
i=0

n−1∑
j=i

j∑
k=i

1 =
n−1∑
i=0

n−1∑
j=i

j − i + 1

To evaluate the first sum let m = j − i + 1 then

n−1∑
j=i

j − i + 1 =
n−i∑
m=1

m = (n − i)(n − i + 1)/2

Hikmat Farhat Data Structures May 31, 2018 51 / 65

Finally, we get

n−1∑
i=0

(n − i)(n − i + 1)/2 =
n3 + 3n2 + 2n

6

= Θ(n3)

Hikmat Farhat Data Structures May 31, 2018 52 / 65

Divide and Conquer

general technique that divides a problem in 2 or more parts (divide)
and patch the subproblems together (conquer).

In this context if we divide an array in two subarrays. We have 3
possibilities:

1 max is entirely in the first half
2 max is entirely in the second half
3 max spans both halves.

Therefore the solution is max(left,right,both)

Hikmat Farhat Data Structures May 31, 2018 53 / 65

Both halves

If the sum spans both halves it means it includes the last element of
the first half and the first element of the second half
This means that the we are looking for the sum of

1 Max subsequence in first half that includes the last element
2 Max subsequence in the second half that includes the first element

S3 = max
0≤i<n/2
n/2≤j<n

j∑
k=i

A[k]

= max
0≤i<n/2
n/2≤j<n

n/2−1∑
k=i

A[k] +

j∑
k=n/2

A[k]


= max

0≤i<n/2

n/2−1∑
k=i

A[k] + max
n/2≤j<n

j∑
k=n/2

A[k]

Hikmat Farhat Data Structures May 31, 2018 54 / 65

Computing max that spans both halves

computeBoth (A,left,right)

sum1 ← sum2 ← 0
for i = center to left do

sum1 ← sum1 + A[i]
if sum1 > max1 then

max1 ← sum1

end

end
for j = center + 1 to right do

sum2 ← sum2 + A[j]
if sum2 > max2 then

max2 ← sum2

end

end
return max1 + max2

Hikmat Farhat Data Structures May 31, 2018 55 / 65

Recursive Algorithm

maxSubarray(A, left, right)

center ← (left + right)/2
S1 ← maxSubarray(A, left, center)
S2 ← maxSubarray(A, center + 1, right)
S3 ← computeBoth(A, left, right)
return max(S1,S2, S3)

Hikmat Farhat Data Structures May 31, 2018 56 / 65

Complexity

Given an array of size n the cost of the call to maxSubarray is divided
into two computations

1 The work of computeBoth which is Θ(n).
2 Two recursive calls on the problem with half the size
3 Therefore the total cost can be written as

T (n) = 2T (n/2) + Θ(n)

to solve the above recurrence, we assume for simplicity that n = 2k

Hikmat Farhat Data Structures May 31, 2018 57 / 65

Thus

T (2k) = 2T (2k−1) + C · 2k

= 2(2T (2k−2) + 2k−1) + C · 2k

= 22T (2k−2) + 2× C · 2k

=

= 2iT (2k−i) + i · C · 2k

= 2kT (1) + k · C · 2k

= Θ(n log n)

Hikmat Farhat Data Structures May 31, 2018 58 / 65

Running time comparison

There is an Θ(n) algorithm for max subarray. Can you find it?

Hikmat Farhat Data Structures May 31, 2018 59 / 65

Master Theorem (special case)

A generalization of the previous cases is done using a simplified
version of the Master theorem

T (n) = aT (n/b) + Θ(nd)

Hikmat Farhat Data Structures May 31, 2018 60 / 65

T (n) = aT (n/b) + cnd

= a
[
aT (n/b2) + c(n/b)d

]
+ cnd

= a2T (n/b2) + cnd(a/bd) + cnd

= a2
[
aT (n/b3) + c(n/b2)d

]
+ cnd(a/bd) + cnd

= a3T (n/b3) + cnd(a/bd)2 + cnd(a/bd) + cnd

= aiT (n/bi) + cnd
i−1∑
l=0

(a/bd)l

The above reaches T (1) when bk = n for some k . We get

Hikmat Farhat Data Structures May 31, 2018 61 / 65

T (n) = akT (1) + cnd
k−1∑
l=0

(a/bd)l

There are three cases

1 a = bd

2 a < bd

3 a > bd

Hikmat Farhat Data Structures May 31, 2018 62 / 65

case 1: a = bd

If a = bd (i.e a
bd

= 1) then we get

T (n) = akT (1) + cnd · k

Since k = logb n then

T (n) = alogb nT (1) + cnd logb n

= nlogb aT (1) + cnd logb n

= ndT (1) + cnd logb n

= Θ(nd log n)

Hikmat Farhat Data Structures May 31, 2018 63 / 65

case 2: a < bd

T (n) = akT (1) + cnd
k−1∑
l=0

(a/bd)l

= akT (1) + cnd (a/bd)k − 1

(a/bd)− 1

for large n, i.e. n→∞ then k = logb n→∞ and since a < bd then
a/bd → 0 Therefore

T (n) = nlogb aT (1) + cnd

but a < bd ⇒ logb a < d and finally

T (n) = Θ(nd)

Hikmat Farhat Data Structures May 31, 2018 64 / 65

case 3: a > bd

In this case we can write

T (n) = ak
a

b
T (n) = akT (1) + cnd (a/bd)k − 1

(a/bd)− 1

= nlogb aT (1) + gnd(a/bd)k

= nlogb aT (1) + gnd(a/bd)logbn

= nlogb aT (1) + gndnlogb(a/b
d)

= nlogb aT (1) + gndn(−d+logba)

= Θ(nlogb a)

Hikmat Farhat Data Structures May 31, 2018 65 / 65

	Efficient Algorithms
	Union Find
	Weighted Quick Union

	Asymptotic Growth
	Code Fragments

	Example Algorithms
	Maximum of N numbers
	Sequential Search
	Factorial
	Exponentiation
	Maximum Subsequence Sum

