Data Structures

Time Complexity and Formal Notations

Hikmat Farhat

May 31, 2018

o = = E A
Hikmat Farhat Data Structures

Efficient Algorithms

Given an algorithm to solve a problem we ask
Is it efficient?
We seek a sensible definition of efficiency

How much work if the input doubles in size?

For large input sizes can our algorithm solve the problem in a
reasonable time?

Hikmat Farhat Data Structures May 31, 2018 2 /65

Polynomial Time

o Efficient algorithm = polynomial in the size of the input
Definition

Polynomial Time: for every input of size n
Ja, b such that number of computation steps < an®

@ a and b are constants that do not depend on n

@ True, some algorithms are polynomials with a and/or b very large

@ but for the majority of algorithms, a and d are relatively small

Hikmat Farhat Data Structures May 31, 2018 3 /65

Why Polynomial Time ?

2

8]

n nlog, n n n 1.5" 2n n!
n=10 < 1sec < 1sec < 1sec < 1sec < 1sec < 1sec 4 sec
n=30 <1lsec <lsec <1sec < 1sec <1 sec 18 min 10% years
n=>50 < 1sec < 1sec < 1sec < 1sec 11 min 36 years very long
n =100 < 1sec < 1sec < 1sec 1 sec 12,892 years 1017 years very long

n=1,000 < 1sec < 1sec 1 sec 18 min very long very long very long
n =10,000 < 1sec < 1sec 2 min 12 days very long very long very long
n = 100,000 < 1sec 2 sec 3 hours 32 years very long very long very long
n = 1,000,000 1 sec 20 sec 12 days 31,710 years very long very long very long

Hikmat Farhat Data Structures

May 31, 2018 4 /65

Worst Case Analysis

@ Usually the running time is the running time of the worst case

@ One could analysis the average case but it much more difficult and
depends on the chosen distribution.

@ Therefore an algorithm is efficient if it has a worst case polynomial
time

@ There are exceptions the most important being the simplex algorithm
that works very well in practice

Hikmat Farhat Data Structures May 31, 2018 5/ 65

Informal Example: Union Find

@ We will introduce the cost of algorithms informally by an example:
union find.

@ We have a set of n points and a set of m connections between these
points.

@ For any two points p and g we would like to answer the questions: is
there a path from p to g?

@ Three different algorithms, with different costs, will be presented to
solve the above problem.

Hikmat Farhat Data Structures May 31, 2018 6 / 65

Union Find: attempt number 1

@ The basic idea is to associate an identifier with every point, so we
maintain an array id[n].

@ The identifier of a given point is the group the point belongs to.
Initially there are n group with one point in each, namely id[i] =i

@ When two points, p and g, are found to be connected their respective
groups are merged (union).

Hikmat Farhat Data Structures May 31, 2018 7 /65

The find function

@ the function Find(p) returns the group id that p belongs to

Instuctions cost times
Find (p) o) 1
Return id[p] ¢ 1
@ therefore the cost of function find(p) is constant (i.e. independent of
the number of points)

Hikmat Farhat Data Structures May 31, 2018 8 /65

Instructions cost times
1 Union (p,q) o) 1
2 idp < Find(p) a 1
3 idg < Find(q) a 1
4 if idp = idg then o)) 1
5 Return c3 1
6 fori=0ton—1do ¢ n+1
7 if id[i] = idp then c5 n
8 id[i] < idq 6 tp
9 count < count — 1 c7 1
10 Return c3 1

@ Whe p = g the cost of Union is ¢y + 2¢; + ¢ + ¢3 = A and when

p # q the total cost of Union is

c+2ca+co+a(lnt+1)+osn+ cety+ o7+ c3

@ Which can be written as B + Cn + cgtp, where B and C are constants

and t, is evaluated next

Hikmat Farhat Data Structures

May 31, 2018

9/65

Computational Cost

How much does it "cost” to run Find and Union when we have n
points?

For Find we already calculated it, it is a constant, dy + di,
independent of the number of points.

For Union, we still need to calculated t, which is the number of times
line 8 is executed.

Line 8 is executed at least once since we know that at least

id[p] = idp.
Also, line 8 is executed at most n — 1 times because at least
id[q] # idp.

Therefore 1 < t, < n— 1. Inserting the value of t, in the previous
calculation for Union we get:

B+ Cn+cs < Cost <(B—cs)+ (C+cs)n

Rearranging terms we get

a+ n< Cost <~y+dn

Hikmat Farhat Data Structures May 31, 2018 10 / 65

Quick Union

o A different approach is to organize all related points in a tree
structure.

Two points belong to the same group iff they belong to the same tree.

A tree is uniquely identified by its root.

The array id[] has a different meaning: id[i/] = k means that site k is
the parent of site /.

Only the root of a tree has the property id[i] = i;

In this case find(p) returns the root of the tree that p belongs to.

Hikmat Farhat Data Structures May 31, 2018 11 / 65

Quick Union Pseudo Code

Find(p)

while id[p] # p do
| p=id[p]

end

return p

Union(p,q)

proot <— Find(p)

groot <+ Find(q)

if proot = groot then
‘ return

end

id[proot| « qroot

count < count — 1

Hikmat Farhat Data Structures May 31, 2018 12 / 65

Quick Union Cost

@ The cost of Find(p) is 2d + 1 where d is the depth of node p.

@ This means that the cost of Union(p, q) is between
(2dp + 1)+ (2dg +1) +1 and (2d, + 1) + (2dy + 1) + 3.

@ The problem is that in some cases the tree degenerates into a linear
list.

@ In that case the height=size and instead of getting log n behavior we
get n.

@ To avoid such a situation we try to keep the trees balanced.
@ We do this by always attaching the small tree to the large one.

@ to this end we introduce a variable tsize initialized to 1.

Hikmat Farhat Data Structures May 31, 2018 13 / 65

Union Find: take 3

Union(p,q)

proot <— Find(p)
groot <+ Find(q)
if proot = groot then
‘ return
end
if tsize[proot] > tsize[qroot] then
id[groot] < proot
tsize[proot| < tsize[proot| + tsize[qroot]
else
id[proot| < gqroot
tsize[qroot| < tsize[proot| + tsize[qroot]
end
count < count — 1

Hikmat Farhat Data Structures May 31, 2018 14 / 65

Weighted Quick Union

@ We have shown that in the quick union version UnionFind, " find(p)”
costs 2d 4+ 1 where d is the depth of node p.

@ we will now show that during the computation of the weighted quick
union for N sites, the depth of ANY node is at most log V.

o It is sufficient to show that the height of ANY tree of size k is at
most log k (this is not the case in the original quick union where the
height can be up to kK — 1)

Hikmat Farhat Data Structures May 31, 2018 15 / 65

Proof

By induction on the size of the tree.

@ Base case: k =1 then there is only one node and the height is
log k = 0.

@ Assume that for any tree, T of size i < n, the height of T, h; is at
most log i and consider two trees of size i < j.

So we have h; < logi and h; < log;.

Hikmat Farhat Data Structures May 31, 2018 16 / 65

@ The size of the combined tree is i + j = k.

@ Using the weighted quick union method we know that the height of
the combined tree is at most max(1 + log i, logj) (why?)

@ in the first case 1 + log i = log2i < log(i +j) = log k
@ in the second case logj < log(i + j) = log k.

Hikmat Farhat Data Structures May 31, 2018 17 / 65

Asymptotic Growth of Functions

Definition

Big Oh:The set O(g(n)) is defined as all functions f(n) with the property
dc, ng such that f(n) < cg(n) for all n > ng

cg(n)

fin)

Figure : Graphical definition of O taken from the CLRS book

oy 31207818 /65

Example

e f(n) =2n%+ n= O(n?) because let c =3 and ng = 1
Vn>ng=1
n < n?
2n° +n < 3n?
f(n) < cn?
f(n) = O(n?)

@ On the other hand f(n) = 2n? + n # O(n)

oy 31207819 /65

Definition
Big Omega:The set Q(g(n)) is defined as all functions f(n) with the

property
dc, ng such that f(n) > cg(n) for all n > ng

Q)

cg(n)

Figure : Graphical definition of Q taken from the CLRS book

oy 31207820 /65

Example

e Consider f(n) = +/n and g(n) = log n.
e f(n) =Q(g(n)) because for c =1, nyg = 16 we have

V16 = 4 = log 2*

@ Note that between n=4 and n=16 the value of log, n > /n

I

— sqrt
— log

T T T T
20 30 40 50
=] = = E E 9Oace
Hikmat Farhat Data Structures

Abuse of notation: if h(n) € O(g(n)) we write h(n) = O(g(n))
similarly if h(n) € Q(g(n)) we write

h(n) = Q(g(n))

If h(n) = O(g(n)) we say g(n) is an upper bound for f(n).

If h(n) = Q(g(n)) we say g(n) is a lower bound for f(n).

Hikmat Farhat Data Structures May 31, 2018 23/ 65

Definition
Big ©:The set ©(g(n)) is defined as all functions f(n) with the property
dei, ¢, ng such that c1g(n) < f(n) < cag(n) for all n > ng

c8(n)

fim)

c18(n)

Figure : Graphical definition of © taken from the CLRS book

oy 3120782 /65

Example

@ Consider c; =1, ¢ =3 and ng = 1 it is obvious that
c1n2 < 2n® +n < <:2n2 ¥n > ng

@ We can show that f(n) = ©(g(n)) iff
f(n) = O(g(n)) and
f(n) = Q(g(n))
o If f(n) = ©(g(n)) we say g(n) is a tight bound for f(n).

Hikmat Farhat Data Structures May 31, 2018 25/ 65

Definition

Little Oh: The set o(g(n)) is defined as all functions f(n) with the property
for all ¢, Ing such that

f(n) < cg(n) for all n > ng

We can show that the above definition is equivalent to

ey 31207826 /65

Definition

Little omega: The set w(g(n)) is defined as all functions f(n) with the
property

for all ¢, Ing such that

cg(n) < f(n) for all n > ng

We can show that the above definition is equivalent to

jim ()

oo g(n) o

Hikmat Farhat Data Structures May 31, 2018 27 / 65

Examples

f(n)=2n>+n
e f(n) = w(n) because
. 2n’+n
lim ——— = o0
n—o00 n
o f(n) = o(n®) because
2n% +n _

lim 3
n—o0 n

oy 31207828 /65

Using Limits

@ Sometimes it is easier to determine the relative growth rate of two
functions f(n) and g(n) by using limits

>
>

>

e Can

if limp_yoo 42 = 0 then f(n) = o(g(n)).

g(n) —
if iMoo % = oo then f(n) = w(g(n)).
if lim,_ o0 % = ¢, for some constant c, then f(n) = ©(g(n)).

we always do that?No

@ In many situations the complexity cannot be written in an analytic
form.

Hikmat Farhat Data Structures May 31, 2018

29 / 65

Exponential vs Polynomial vs Logarithmic

it is easy to show that foralla> 0 ,b>1

And polynomials grow faster(use m = log n and the previous result) than
logarithms (log® x = (log x)?)

. log?n
lim gb =0
n—oo n

I ———

Arithmetic Properties

e transitivity: if f(n) = O(g(n)) and g(n) = O(h(n)) then

() = O(h(n))

> eg: logn= O(n) and n = O(2") then logn = O(2").

e constant factor: if f(n) = O(kg(n)) for some k > 0 then

7(n) = O(a(m).
» eg: n?> = O(3n?) thus n?> = O(n?).
e sum: if fi(n) = O(g1(n)) and fa(n) = O(g2(n)) then
A(n) + fo(n) = O(max(g1(n), g2(n)))

» 3n? = O(n?), 6log n = O(log n) then 3n? + 6log n = O(n?)

° product fl(n) O(gl()) and f2(n) = O(g2(n)) then
fi(n) x f2(n) = O(g1(n) * g2(n))

> eg: 3n = 0(n?), 6log n = O(log n) then 3n? x 6log n = O(n?log n)

Hikmat Farhat Data Structures

May 31, 2018

31/ 65

Code Fragments

sum=20
fori=1...ndo

‘ sum < sum—+1
end

@ the operation sum = 0 is independent of the input thus it costs a
constant time ¢y.

@ the operation sum < sum + 1 is independent of the input thus it cost
some constant time c.

@ Regardless of the input the loop runs n times therefore the total cost
is c1 + con = O(n).

Hikmat Farhat Data Structures May 31, 2018 32 /65

The algorithm below for finding the maximum of n numbers is ©(n).
Input: ai,...,an
Output: max(ay,...,ap)

Initially max = a3
fori=2...ndo

if a; > max then
| max = a;

end
end

e Try 89,47,80,50,67,102 and 19,15,13,10,8,3

@ Do they have the "same” running time?

Hikmat Farhat Data Structures May 31, 2018 33 /65

Sequential Search

Given an array a check if element x is in the array.

fori=1...ndo
if a[i] = x then
| return True
end
end
return False

@ What is the running time of the above algorithm?

@ Consider the two extreme cases: x is the first or the last element of
the array.

Hikmat Farhat Data Structures May 31, 2018 34 /65

o If x is the first element than we perform a single operation. This is
the best-case.

@ If x is the last element than we perform n operation.This is the

worst-case.
@ Now if we run the algorithm on many different (random) input and
average out the results we get the average-case.
@ Which one do we use?
» Depends on the application and the feasibility.
» Real-time and critical applications usually require worst-case
» In most other situations we prefer average-case, but difficult to
calculate and depends on the random distribution!
@ In light of the above, what is the best-case,average-case and
worst-case for the compute max algorithm we had before?

Hikmat Farhat Data Structures May 31, 2018 35/ 65

Nested Loops

@ What is the complexity of nested loops?
@ The cost of a stmt in a nested loop is the cost of the statement
multiplied by the product of the size of the loops

fori=1...ndo
forj=1...mdo
| k+—k+1
end

end

@ The cost is O(n* m)

Hikmat Farhat Data Structures May 31, 2018 36 / 65

Factorial

o Consider the recursive implementation of the factorial function.
factorial(n)

if n=1 then
| return 1

else
| return n*factorial(n-1)

end
@ The cost of size n? T(n)=T(n—1)+C
@ Thus T(n) = ©(n).

Hikmat Farhat Data Structures May 31, 2018 37/ 65

Complexity of Factorial

T(n)=T(h-1)+C
=T(n—-2)+2C
:T&n—i)—l—i*C
:Tél)—l—(n—l)*C
=nxC+T(1Q)-C
= 0O(n)

I ——

Fibonacci

e Computing the n*" Fibonacci number can be done recursively
fib(n)
if n =0 then
| return 0
end

if n=1 then
| return 1

end
return £ib(n-1) +fib(n-2)

e If T(n) is the cost of computing Fib(n) then
T(n)=T(nh—-1)+T(n—-2)+3

e We will show, by induction on n, that T(n) > fib(n) i.e. the cost of
computing Fibonacci number n is greater than the number itself.

Hikmat Farhat Data Structures May 31, 2018 39 / 65

@ We are assuming that all operations cost the same so the 3 comes
from executing the two if stmts and the sum.

First the base cases. If n =0 then the algorithm costs 1 (if stmt), if
n =1 it costs 2 (2 if stmts) thus T(0) =1, T(1) = 2.

In the other cases we have T(n) = T(n—1)+ T(n—2)+ 3. This
means T(2) =6 > fib(2) = 1.

Assume that T(n) > fib(n) then

T(n+1)=T(n)+T(n—-1)+3
> fib(n) + fib(n — 1) hyp.
> fib(n+ 1)

One can show that (for n > 5) fib(n) > (3/2)" thus T(n) > (3/2)"
which is exponential!

Hikmat Farhat Data Structures May 31, 2018 40 / 65

Fibonacci: take two

@ can we compute Fibonacci numbers more efficiently?

@ It turns out yes. By just "remembering” the values we already
computed.

@ A simple iterative algorithm

FiboIter(n)

fl0] <0

fl1]«1

for i < 2 to ndo

| Fi] « fli — 1] + £[i — 2]
end

Hikmat Farhat Data Structures May 31, 2018 41 / 65

Comparison

We had two different algorithms to compute Fibonacci number n
One was 2((3/2)") while the other was O(n).

In the first one we did not need to "save” anything.

In the second algorithm we used an array of size n: space
complexity: O(n).

This is a trade off between time and space.

Obviously in this case the trade off is worth it.

Hikmat Farhat Data Structures May 31, 2018 42 / 65

Exponentiation

@ Exponentiation is another example where the simplest algorithm is
much less than optimal.

@ The simplest way to compute x" is x...x
——
n times

therefore the complexity of the above algorithm is ©(n).
We can do (much) better by observing that

if n is even then x" = (x"/2)?

if nis odd then x" = (x"/2)2 . x

Note the integer division, n/2 = |n/2], e.g. 7/2=3

Hikmat Farhat Data Structures May 31, 2018 43 / 65

Implementation

int power(int x, int n){
if (n==0)return 1;
int half=power(x,n/2);
half=halfshalf;
if((n%2)!=0)half=halfxx;
return half;

oy 31207840 /65

Complexity of Exponentiation

o The analysis is simplified by assuming n = 2k (other cases are similar,
albeit more complicated)

@ Assume: n/2, half x half and the if stmt each costs 1.

e for a total of 4 (including the test for x==0) when n is even and 5
when it is odd.

o Let T(n) be the computational cost for x" then

T(n)=T(n/2)+4
T(n/4)+8

= T(n/2") +4i

- 7.'&1) + 4k
= O(k) = ©(log n)

Hikmat Farhat Data Structures May 31, 2018 45 / 65

Exponentiation

@ In the general case we perform one extra computation every time the
exponent is odd.

@ Let 3(n) be the number of times such computation is performed.

@ It is easy to check that 3(n) = is one less than the number of 1's in
the binary representation of n

@ For example if n = 21 then 21 — 10 — 5 — 2 — 1 which means the
intermediate value is odd twice.

@ Compare with the binary representation 21 = 1011.

@ Clearly (n) is at most equal to the number of bits in the binary
representation of n which is |log n]|

@ So even in the general case the complexity is ©(log n).

Hikmat Farhat Data Structures May 31, 2018 46 / 65

General case

@ In general the problem has the following recursion relation
T(n)=T(|n/2])+4+(n mod 2)
@ We will show that the general form
T(n)=T([n/2])+ M+ (n mod 2) (1)
@ Has solution
T(n) = M|logn| + B(n) (2)

@ Where ((n) is the number of 1's in the binary representation of n.

@ Using the fact that |log|n/2]| = [log n| — 1 it is easy to check that
(2) satisfies (1).

Hikmat Farhat Data Structures May 31, 2018 47 / 65

Fibonacci: Take Three

@ The previous method for exponentiation can be used to compute
Fibonacci (n) in O(log n).

@ The key is that
Fooi Fo (1 1)\"
Fo Fn1) 10

@ The above is shown by induction on n.

@ We know how to compute the power in log n.

Hikmat Farhat Data Structures May 31, 2018 48 / 65

Maximum Subarray Sum

@ Given an array A of n elements we ask for the maximum value of
J
> A

k=i

o For example if A is -2,11,-4,13,-5,-2 then the answer is 20 = Y7 _,

oy 31207849 /65

Brute Force

@ Compute the sum of all subarrays of an array A of size n and return
the largest.
@ A subarray starts at index i/ and ends at index j where 0 </ < n and
0<j<n
@ Therefore for each possible i and j compute the sum of A[/] ... A[].
int maxSubarray(int *A,int n){
int sum=0, max=A[0];

for(int i=0;i<n;i++){
for(j=i;j<n;j++){

sum=0;
for(int k=i;k<=j;k++)
sum+=A[k];
i f (max<sum)max=sum;
}
}
return max;

Hikmat Farhat Data Structures May 31, 2018 50 / 65

Complexity

@ To determine the complexity of the brute force approach we can see
that there are 3 nested loop therefore the complexity of the problem
depends on how many times line 14 is executed

@ The number of executions is

n—1n-1 j n—1n-1
2. 2.2 1=) > i+l
i=0 j=i k=i i=0 j=i

@ To evaluate the first sum let m=j — i + 1 then

n—1 n—i
N j—it+1=) m=(n-i)(n-i+1)/2
j=i m=1

Hikmat Farhat Data Structures May 31, 2018 51 / 65

o Finally, we get

n—1 3 2
S (n—i)n—i+1)2=" +3g +2n
i=0

— o(n?)

o = = E A
Hikmat Farhat Data Structures

Divide and Conquer

@ general technique that divides a problem in 2 or more parts (divide)
and patch the subproblems together (conquer).

@ In this context if we divide an array in two subarrays. We have 3
possibilities:
© max is entirely in the first half
© max is entirely in the second half
© max spans both halves.

@ Therefore the solution is max(left,right,both)

Hikmat Farhat Data Structures May 31, 2018 53 / 65

Both halves

o If the sum spans both halves it means it includes the last element of
the first half and the first element of the second half
@ This means that the we are looking for the sum of
@ Max subsequence in first half that includes the last element
@ Max subsequence in the second half that includes the first element

S3 = max ZA[k]

0<I<n/2
n/2<j<n k=i
n/2—1
= max | > A+ Z AlK]
0<i<n/2 | £ =
n/2<j<n i n/2
n/2—1 j
= Alk Alk
= o2, 2 AKIE max D Al

k=n/2

Hikmat Farhat Data Structures May 31, 2018 54 / 65

Computing max that spans both halves

computeBoth (A left,right)

sumy < sump < 0

for i = center to left do

sumy < sumy + Ali]
if sum; > max; then
‘ maxy < sumy

end

nd

or j = center + 1 to right do

sumy < sumy + A[j]
if sumy > max> then

maxp <— sump

end

end

return max; + maxp

= 0

Hikmat Farhat Data Structures May 31, 2018 55 / 65

Recursive Algorithm

maxSubarray (A, left, right)

center < (left + right)/2

S;1 < maxSubarray(A, left, center)

Sy < maxSubarray(A, center + 1, right)
S3 < computeBoth(A, left, right)

return max(S51, Sz, S3)

Hikmat Farhat Data Structures May 31, 2018 56 / 65

Complexity

@ Given an array of size n the cost of the call to maxSubarray is divided
into two computations

@ The work of computeBoth which is ©(n).
@ Two recursive calls on the problem with half the size
© Therefore the total cost can be written as

T(n) =2T(n/2) + ©(n)

@ to solve the above recurrence, we assume for simplicity that n = 2k

Hikmat Farhat Data Structures May 31, 2018 57 / 65

@ Thus

T(2¥)=2T(2" ")+ C 2
=202T(2k"2) 4 2k"1) 4 C. 2k
=22T(2"?)42x C -2k
=2'T(2")+i-C-2
=2KT(1)+k-C-2k
= O(nlogn)

I —

Running time comparison

@ There is an ©(n) algorithm for max subarray. Can you find it?

T T T T T T T T T
i Linear .
1 O(Nlogl\{) ----- //
Quadratic =—— i T
I Cubic === .-
v | e
£]
w | el
E .
:
s | - i
% | 7
l
L
I i
IJ’,
/”‘

0 + + t T T 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Input Size (N)

Hikmat Farhat Data Structures May 31, 2018 59 / 65

Master Theorem (special case)

@ A generalization of the previous cases is done using a simplified
version of the Master theorem

T(n) = aT(n/b) + ©(n?)

I ——

T(n) = aT(n/b) + cn
—a [ar(n/t#) + c(n/b)d} +end
= a°T(n/b?) 4 cn(a/b?) + cn
— 2 [ar(n/b3) + c(n/bz)d] +cnd(a/b?) + cn?
= 33T (n/b%) + cn(a/b?)? + cn(a/b?) + cn

i—1
=a'T(n/b") + cn Z(a/bd)l
1=0

The above reaches T(1) when b* = n for some k. We get

Hikmat Farhat Data Structures May 31, 2018 61 / 65

k—1
T(n)=a"T(1)+cn?) (a/b?)
=0
There are three cases
Q a=b
Q@ a<b?
Q a> b

o & = Q>
Hikmat Farhat Data Structures

case 1: a = b

If a= b9 (i.e £z = 1) then we get

T(n)=a"T(1) +cn? -k
Since k = logy, n then
T(n) = a°®"T(1) 4+ cn? log,, n
= n'°82T (1) + cnlogy, n
=n9T(1) + cnlogy n
= O(n%log n)

oy 31207863 /65

case 2: a < b

k—1
T(n)=a"T(1) + cn Z(a/bd)l
1=0
(a/bd)k -1

=akT(1) + cndm

for large n, i.e. n — oo then k = log, n — oo and since a < b9 then
a/b? — 0 Therefore

T(n) = n'°83T(1) 4 cn?

but a < b? = log, a < d and finally

Hikmat Farhat Data Structures May 31, 2018 64 / 65

case 3: a > b

In this case we can write

d\k
T(n) = ak[—iT(n) =a"T(1) + cnd%
= n'°®83T (1) + gn?(a/b?)*
— %853 T (1) + gn(a/b%)'o8"
— ploBsaT(1) + gndnlogb(a/b)
— 19863 T (1) 4 gn?n(~d+o8sa)
= O(n's?)

I —

	Efficient Algorithms
	Union Find
	Weighted Quick Union

	Asymptotic Growth
	Code Fragments

	Example Algorithms
	Maximum of N numbers
	Sequential Search
	Factorial
	Exponentiation
	Maximum Subsequence Sum

