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Introduction

I Note Most Figures are from Cormen et. al.

I A graph G = (V ,E ) is a set of vertices V and a set of edges
E .

I Each element in E is a pair (v ,w) with v ,w ∈ V .

I If the pairs are ordered then the graph is directed
(sometimes called digraph).

I if (v ,w) ∈ E then we say w is adjacent to v

I Usually we associate a weight (or cost) with each edge.

I A path is a sequence of vertices w1, . . . ,wn such that
(wi ,wi+1) ∈ E .

I the length of a path is the number of edges in it
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I A path is said to be simple if all vertices, except possibly the
first and last, are distinct.

I A cycle is a path such that w1 = wn.

I in an undirected graph we require that the edges be distinct
to have a cycle.

I for example v ,w , v should not be considered a cycle since
(v ,w) and (w , v) are the same edge.

I A graph is said to be acyclic if it contains no cycles.

I A graph in which from every vertex there is path to every
other vertex is called connected.
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Graph representation

I There are essentially two ways to represent a graph
I Adjacency matrix.
I Adjacency list.

I Most of the time adjacency list is better since it is
O(|E| + |V |) in memory requirement.

I This is the preferred representation when the graph is sparse,
|E|�|V 2|.

I The adjacency matrix is O(|V 2|) in memory requirement and
it is preferred when the graph is dense, |E|≈|V 2|.

I In the adjacency matrix representation it is much faster to
check whether two vertices are adjacent.
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Lecture Notes for Chapter 22:
Elementary Graph Algorithms

Graph representation

Given graph G = (V, E).
• May be either directed or undirected.
• Two common ways to represent for algorithms:
1. Adjacency lists.
2. Adjacency matrix.

When expressing the running time of an algorithm, itís often in terms of both|V |
and |E |. In asymptotic notationóand only in asymptotic notationóweíll drop the
cardinality. Example: O(V + E).
[The introduction to Part VI talks more about this.]

Adjacency lists

Array Adj of |V | lists, one per vertex.
Vertex uís list has all vertices v such that (u, v) ∈ E . (Works for both directed and
undirected graphs.)

Example: For an undirected graph:
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5 3
4
5

Adj

4 3

If edges have weights, can put the weights in the lists.
Weight: w : E → R
Weíll use weights later on for spanning trees and shortest paths.
Space: !(V + E).
Time: to list all vertices adjacent to u: !(degree(u)).
Time: to determine if (u, v) ∈ E : O(degree(u)).
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Example: For a directed graph:
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4

Adj

34

Same asymptotic space and time.

Adjacency matrix

|V |× |V | matrix A = (aij )

aij =
{
1 if (i, j) ∈ E ,
0 otherwise .

1 0 0 1
0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0
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0
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0
1
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1 2 3 4
1
2
3
4

Space: !(V 2).
Time: to list all vertices adjacent to u: !(V ).
Time: to determine if (u, v) ∈ E : !(1).
Can store weights instead of bits for weighted graph.
Weíll use both representations in these lecture notes.

Breadth-first search

Input: Graph G = (V, E), either directed or undirected, and source vertex s ∈ V .
Output: d[v] = distance (smallest # of edges) from s to v, for all v ∈ V .
In book, also π [v] = u such that (u, v) is last edge on shortest path s ! v.
• u is vís predecessor.
• set of edges {(π [v], v) : v #= s} forms a tree.

Later, weíll see a generalization of breadth-first search, with edge weights. For
now, weíll keep it simple.

• Compute only d[v], not π [v]. [See book for π [v].]
• Omitting colors of vertices. [Used in book to reason about the algorithm. Weíll
skip them here.]
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Breadth-first search
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In book, also π [v] = u such that (u, v) is last edge on shortest path s ! v.
• u is vís predecessor.
• set of edges {(π [v], v) : v #= s} forms a tree.

Later, weíll see a generalization of breadth-first search, with edge weights. For
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skip them here.]
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Topological Sort

I Topological sort is an ordering of directed acyclic graphs.

I The idea is that if there is a path from node u to node v then
v appears after u in the ordering.

I As an example, we use topological sort to list the valid
sequence of courses that are consistent with prerequisites.
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I A simple algorithm to perform topological sort is to find a
node with no incoming edges.

I We can print that edge then follow the adjacency list.

I Define the indegree of a node v as the number of edges
(u, v).

I Suppose that for each node in the graph we have the indegree
and the adjacency list then a simple algorithm would be
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1 for i = 1 to n do
2 u=findIndegreeZero()
3 print u
4 foreach v ∈ Adj [u] do
5 v .indegree ← v .indegree − 1

I The complexity of the above algorithm is O(|V |2) because
findIndegreeZero has to scan all nodes every time which is
O(|v|)

I since we do it O(|V |)) times then the total is O(|V |2).

I Not counting the cost of computing the indegree of all nodes
initially.
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Breadth First Search

I As we will see later many algorithms depend on breadth first
search (BFS).

I Given a graph G = (V ,E ) and a source node s, BFS
systematically ”discovers” all vertices that can be reached
from s.

I It is breadth first because all vertices at distance k from s are
discovered before any vertex at distance k + 1 is discovered.

I BFS works by coloring nodes with two different colors: white
and black.

I A white node means it has not been discovered. Black means
it has been discovered.
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I The algorithm starts by coloring all nodes white except the
source s is colored black.

I It then proceed with the discovery of all of s neighbors.
I Given a node v

I v .d is the distance (number of links) from s to v .
I adj [v ] is the list of v ’s neighbors.
I v .p is the predecessor of v in the path from s to v .
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BFS Initialization

1 BFS(G,v)

2 foreach v ∈ V − {s} do
3 v .color ←WHITE
4 v .d ← 0
5 v .p ← NULL

6 s.color ← BLACK
7 s.d ← 0
8 s.p ← NULL
9 Q ← ∅

10 ENQUEUE(Q,s)
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BFS Pseudo Code

1 BFS(G,v)

2 while Q 6= ∅ do
3 u ← DEQUEUE(Q)

4 foreach v ∈ Adj[u] do
5 if v .color = WHITE then
6 v .color ← BLACK
7 v .d ← u.d + 1
8 v .p ← u
9 ENQUEUE(Q,v)
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Complexity of BFS

I To analyze the complexity of BFS first we note that after
initialization no vertex color is set to white.

I The above implies that each vertex is enqueued (and
dequeued) only once.

I Since the enqueue/dequeue operations are O(1) then for all
nodes it is O(|V |).

I When a vertex is dequeued we scan the adjacency list and the
sum of all adjacency list is just |E|

I Therefore the total cost of BFS is O(|V | + |E|).
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Shortest Paths

I Given a graph G = (V ,E ) and a source node s ∈ V . We
define the shortest-path distance δ(s, v) from s to v ∈ V to
be the minimum number of edges in any path from s to v .

I BFS not only discovers every vertex v ∈ V reachable from a
source s

I But also v .d = δ(s, v) and

I The shortest-path from s to v is composed of the
shortest-path from s to v .p followed by the edge (v .p, v).

I The above observation allows us to determine not only the
cost δ(s, v) but also the exact path by iterating backwards
over v .p.
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Depth First Search

I In a depth first search DFS edges are explored out of the
most recently discovered node.

I As the name implies we go ”deeper” whenever it is possible.

I When all the neighbors of a node v are discovered we
”backtrack” to the parent of v and explore other nodes.

I When we are done discovering the descendants of some source
s and some nodes remain undiscovered then one of them is
selected as source and the process is repeated.

I When the algorithm is done with a certain node, it records the
discovery time and finishing time
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DFS Pseudo Code

1 DFS(G)

2 foreach v ∈ V do
3 v .color ←WHITE
4 v .p ← NULL

5 time ← 0
6 foreach v ∈ V do
7 if v .color = WHITE then
8 DFS-VISIT(v)
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DFS-VISIT Pseudo Code

1 DFS-VISIT(u)

2 u.color ← GRAY
3 time ← time + 1
4 u.d ← time
5 foreach v ∈ adj [u] do
6 if v .color = WHITE then
7 DFS-VISIT(v)

8 u.color ← BLACK
9 times ← time + 1

10 u.f ← time
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Complexity

I The initialization to WHITE is O(|V |)
I Then DFS is called O(|V |) times.

I Each time DFS-VISIT is called only once for each node
because it is called on WHITE nodes only.

I The cost of DFS-VISIT(v) is O(|adj [v ]|).

I Thus the cost of all calls to DFS-VISIT is∑
v∈V
|adj [v ]|= O(|E|)

I Therefore the total cost is

O(|E| + |V |)
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Topological Sort Revisited

I We can implement an efficient topological sort using DFS as
follows

1. Call DFS on the graph.
2. Every time a node is finished add it to the front of a linked list
3. When done the resulting list is the topological sort.
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DFS Topological Sort Example
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Transitive Closure

I Given a graph G =< V ,E > the transitive closure is a two
dimensional array (a relation) tc[][] such that t[u][v ] = 1 if v
can be reached from u and 0 otherwise.

I The transitive closure closure can be computed with a slight
modification of DFS shown below.
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1 foreach s ∈ V do
2 SEARCH(s,s);
3 SEARCH(s,u)

4 tc[s][u]← 1
5 foreach v ∈ adj [u] do
6 if tc[s][v ] = 0 then
7 SEARCH(s,v)
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Minimum Spanning Trees

I In many application, when the system is represented by a
graph we need to find a Minimum Spanning Tree (MST).

I As the name suggest this collection of nodes is

1. A tree.
2. Spanning. meaning includes all the nodes of the graph.
3. It has the least total cost of all such trees.

I First we need to introduce some preliminary operations.
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Disjoint Sets Data Structures

I We introduce some operations on disjoint sets. Any element
is contained in only one set.

I MAKE-SET(x): create a new set whose only member is x .

I FIND-SET(x):returns a pointer to the representative of the
set containing x .

I UNION(x ,y):combine the sets containing x and y into a new
set.
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Kruskal’s Algorithm

I Kruskal’s algorithm computes a MST of a given graph.

I Every edge has an associated weight or cost.

I The idea is to build the MST by adding an edge every
iteration.

I The edges are considered by increasing order.

I An edge is added if it doesn’t create a cycle.

I The algorithm stops when there are no more edges to consider.
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1 MST-KRUSKAL(G)

2 A← ∅
3 foreach v ∈ V do
4 MAKE-SET(v)

5 F ← SORT-EDGES(E)

6 foreach (u, v) ∈ F do
7 if FIND-SET(u) 6= FIND-SET(v) then
8 A← A ∪ {(u, v)}
9 UNION(u, v)
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Prim’s Algorithm

1 MST-PRIM(G,r)

2 foreach v ∈ V do
3 v .key ←∞
4 v .p ← NULL

5 r .key ← 0
6 Q ← V
7 while Q 6= ∅ do
8 u ← DELETE-MIN(Q)

9 foreach v ∈ Adj[u] do
10 if w(u, v) < v .key and v ∈ Q then
11 v .key ← w(u, v)
12 v .p ← u
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Why does it work?

I Both Kruskal’s and Prim’s algorithms are special cases of a
general method to obtain a minimum spanning tree.

I The basic idea is based on the following:

I Maintain a set of edges A.

I Before every iteration A is a subset of some minimum
spanning tree.

I At each step we add an edge to A such that A is still a subset
of some MST.

I An edge having that property is called safe for A.
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1 MST(G)

2 A← ∅
3 while A is not MST do
4 find edge (u, v) safe for A
5 A← A ∪ {(u, v)}
6 return A

I The above algorithm looks easy.

I But how do we find a safe edge?
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Some Definitions

I Let G = (V ,E ) be a graph with some real-valued weight
function w : E → R.

I A cut (S ,V − S) of the graph G is a partition of V .

I We say a cut (S ,V − S) respects A ⊆ E if no edge in A
crosses the cut.

I An edge is said to be a light edge crossing a cut if its weight
is the minimum of any edge crossing the cut.
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This is why it works

I The reason why both algorithms work is the following theorem

Theorem
Let A be a set of edges included in some minimum spanning tree,
(S ,V − S) a cut that respects A, and (u, v) be a light edge
crossing (S ,V − S). Then (u, v) is safe for A.
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Correctness of Prim’s Algorithm

V − Q Qu

u.p

I At the beginning of every iteration (except the first) Prim’s
algorithm starts by removing u where u.key is minimum. This
means that (u.p, u) is a light edge for the cut (Q,V − Q)

I Therefore Prim’s algorithm is correct.
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Correctness of Kruskal’s Algorithm

I Prior to every iteration of Kruskal’s algorithm we have

1. A forest (a collection of trees) GA = (V ,A). (initially is A is
empty)

2. Select an edge (u, v) ∈ E − A with

2.1 w(u, v) is minimal.
2.2 u ∈ Tu and v /∈ Tu where Tu is a tree in GA that contains u.

3. From the above we have that: (Tu,V − Tu) is a cut that
respects A and (u, v) is a light edge crossing that cut.

I From the theorem we know that (u, v) is a safe edge for A.
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Complexity

I Kruskal: we use the union find operations we learned in the
beginning of the semester. Let | V |= n and | E |= m.

I Recall that we use an array id to specify the parent of node in
the (logical) tree that represents a given group.

I e.g. node id [i ] is the parent of i . Initially each node is its own
parent: id [i ] = i thus the first for loop is Θ(n).

I Sorting is Θ(m logm).

I In our implementation, Union is Θ(1) and FIND-SET is
Θ(log n). Therefore the foreach loop is Θ(m log n).

I Adding all the contributions we get: Θ(n +m logm +m log n).
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Strongly Connected Components

I Given a graph G =< V ,E > we say that the set of vertices
C ⊆ V is a strongly connected component if

I for every pair u, v ∈ C we have: u  v and v  u

I We can print all strongly connected components in a graph by
doing DFS twice. The first over the graph and the second
over the transpose of the graph.
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Kosaraju Algorithm

1 foreach v ∈ V do
2 if v .color = WHITE then
3 DFS-VISIT(v)

4 Reverse all the edges of G and reset all colors
5 foreach v ∈ V in decreasing finish time do
6 if v .color = WHITE then
7 DFS-VISIT(v)
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Single Source Shortest Path

I Given a graph G = (V ,E ) with a real-valued weight function
w we often as the question:

I What is the minimal cost (shortest) path from s ∈ V to all
other vertices of the graph.

I We will look at two algorithms that perform that taks

1. Bellman-Ford.
2. Dijkstra.

I First we need some definitions and theorems.

Hikmat Farhat Data Structures



Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

I Given a graph G = (V ,E ) and a real-valued weight function
w : E → R.

I weight of path p = (v0, . . . , vk) sometimes written as

w(p) =
k∑

i=1

w(vi−1, vi )

I The shortest path cost δ

δ(u, v) =

{
min{w(p) : u

p
 v} if there is a path from u to v

∞ otherwise

}
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Properties of Shortest Path

I Subpaths of shortest path are subpath: Given a graph
G = (V ,E ) and weight function w : E → R let
p = (v1, . . . vk) be a shortest path from v1 to vk then for any
1 ≤ i , j ≤ k , pij = (vi , . . . , vj) is a shortest path from vi to vj .

I Proof: we write v1
p
 vk which can be decomposed into

v1
pi vi

pij
 vj

pj
 vk

I Then w(p) = w(pi ) + w(pij) + w(pj) so if pij is not the
shortest path then ∃p′ij with w(p′ij) < w(pij) then we can write

I w(p′) = w(pi ) + w(p′ij) + w(pj) < w(p) a contradiction since
p is the shortest path from v1 to vk .
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Negative weight

I Even if a path contains edges with negative weight a shortest
path can still be defined.

I It is undefined if the path contains a negative weight cycle.

I This is because we can ”cross” the cycle as many times as we
want, every time lower the cost.

I Therefore in the case when there is a negative cycle on a path
from u to v then we set δ(u, v) = −∞ where δ(a, b) is the
shortest path cost from a to b.
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Example of Negative Cycles

I δ(s, a) = 3,δ(s, b) = −1,δ(s, c) = 5,δ(s, d) = 11.
I (e, f ) form a negative cycle therefore any node reachable from

s through this cycle has δ = −∞
δ(s, e) = δ(s, f ) = δ(s, g) = −∞

I h, i , j are not reachable from s thus
δ(s, h) = δ(s, i) = δ(s, j) =∞
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Representation of Shortest Paths

I In all the algorithms that we will deal with, we maintain for
every vertex v its predecessor v .p (which could be NULL)

I At termination v .p will be the predecessor of v on a shortest
path from source s to v .

I We also maintain a value v .d which at termination will be the
value of the shortest path cost from source s to v .

I During the execution of the algorithm v .d will be an upper
bound on the value of the shortest path cost.

Hikmat Farhat Data Structures



Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

Relaxation

I Relaxing an edge (u, v) means testing if we can improve the
shortest path cost of v by using the edge (u, v).

I If we can then we update v .d and v .p.

24-4 Lecture Notes for Chapter 24: Single-Source Shortest Paths

RELAX(u, v,w)

if d[v] > d[u]+ w(u, v)
then d[v]← d[u]+ w(u, v)

π [v]← u

3 3

RELAX

u v
4 10

4 7

RELAX

4 6

4 6

For all the single-source shortest-paths algorithms weíll look at,

• start by calling INIT-SINGLE-SOURCE,

• then relax edges.

The algorithms differ in the order and how many times they relax each edge.

Shortest-paths properties

Based on calling INIT-SINGLE-SOURCE once and then calling RELAX zero or

more times.

Triangle inequality

For all (u, v) ∈ E , we have δ(s, v) ≤ δ(s, u) + w(u, v).

Proof Weight of shortest path s ! v is ≤ weight of any path s ! v. Path
s ! u → v is a path s ! v, and if we use a shortest path s ! u, its weight is
δ(s, u) + w(u, v).

Upper-bound property

Always have d[v] ≥ δ(s, v) for all v. Once d[v] = δ(s, v), it never changes.

Proof Initially true.
Suppose there exists a vertex such that d[v] < δ(s, v).

Without loss of generality, v is first vertex for which this happens.
Let u be the vertex that causes d[v] to change.
Then d[v] = d[u]+ w(u, v).

So,

d[v] < δ(s, v)

≤ δ(s, u) + w(u, v) (triangle inequality)

≤ d[u]+ w(u, v) (v is first violation)
⇒ d[v] < d[u]+ w(u, v) .

I In the figure to the left the cost of v was changed to the new
cost (7) whereas to the right it was not changed since the
new cost (7) is bigger than the current (6).

I What is NOT shown is the change to v .p in the first case.
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Initialization and Relaxation

I Initially all vertices (except the source) have cost ∞ and no
predecessors (including the source).

1 INITIALIZE(G,s)

2 foreach v ∈ V do
3 v .d ←∞
4 v .p ← NULL

5 s.d ← 0

1 RELAX(u,v)

2 if v .d > u.d + w(u, v) then
3 v .d ← u.d + w(u, v)
4 v .p ← u
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Properties of Relaxation

Relaxation has the following properties

Path relaxation If p = (v0, . . . , vk) is the shortest path from
s = v0 to v = vk and the edges of p are relaxed in
the order (v0, v1), (v1, v2), . . . , (vk−1, vk) then
v .d = δ(s, v). (note that this is true regardless of
any other relaxations)

Predecessor subgraph If v .d = δ(s, v) for all v ∈ V then the
predecessor subgraph is a shortest-paths tree rooted
at s.

Upper Bound We always have v .d ≥ δ(s, v) and once
v .d = δ(s, v) it never changes.

Hikmat Farhat Data Structures



Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

Bellman-Ford Algorithm

I The Bellman-Ford algorithm computes the shortest path from
a given source to all other nodes in the graph.

I It works with negative weights.

I It can detect negative cycles.

I It uses the previously defined procedure RELAX to compute
the shortest path.
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Bellman-Ford Pseudo Code

1 BELLMAN-FORD(G,s);
2 INITIALIZE(G,s)

3 for i ← 1 To V − 1 do
4 foreach (u, v) ∈ E do
5 RELAX(u,v)

6

7 foreach (u, v) ∈ E do
8 if v .d > u.d + w(u, v) then
9 return FALSE

10 return TRUE
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Example
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Correctness of Bellman-Ford

I If the graph has no negative cycles then the shortest path
cannot contain a cycle since remove it ”shortens” (at least the
same for 0 cost cycle) the path

I Therefore if we have n vertices a shortest path cannot visit
more that n of them and thus it contains at most n− 1 edges.

I Bellman-Ford is iterated n − 1 times and each time ALL the
edges are relaxed.

I So if p1, . . . pk is a shortest path, iteration i relaxes all edges
INCLUDING pi−1, pi .

I This means among ALL relaxations the edges of the path are
relaxed in the order (p1, p2), . . . , (pk−1, pk)

I By the path-relaxation property d [pk ] = δ(s, pk)
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Complexity of Bellman-Ford

I The initialization is O(|V |).

I the double loop is O(|V | · |E|).

I Therefore the total cost of the Bellman-Ford is O(|V | · |E|).

Hikmat Farhat Data Structures



Graphs
Representation
topological sort

BFS and DFS
MST

Connected Components
Shortest Paths

Dijkstra’s Algorithm

I Dijkstra’s algorithm is another single source shortest path.

I It works when all weights are positive.

I We will see that it is faster than the Bellman-Ford algorithm.

I It maintains a set S of nodes whose shortest paths have been
determined

I All other nodes are kept in a min-priority queue to keep track
of the next node to process.
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Dijkstra Pseudo Code

1 DIJKSTRA(G,s);
2 INITIALIZE(G,s)

3 S ← ∅
4 Q ← V
5 while Q 6= ∅ do
6 u ← EXTRACT-MIN(Q)

7 S ← S ∪ {u}
8 foreach v ∈ Adj [u] do
9 RELAX(u,v)
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Complexity

I The running time of Dijkstra’s algorithm depends on the
implementation of the queue.

I Using a min-heap on a sparse graph gives complexity of
O((V + E ) logV ).

I This is because the while loop executes V times. The
extract-min is O(logV ) for a cost of V logV . The relax
includes an key update which means logV . Since each edge is
relaxed at most once then the total is E with a cost of
E logV .
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Bellman-Ford Revisited

I We will take a look at a variation of the Bellman-Ford
discussed earlier.

I The basic idea is that with n nodes the shortest path from
any two nodes can have at most n − 1 edges.

I Let s be the source node. We need to compute the shortest
path from s to all other nodes.

I For any v let d [i , v ] be the cost of the shortest path from s to
v that contains at most i edges. Then (see figure)

d [i + 1, v ] = min(d [i , v ], min
w∈V

(d [i ,w ] + cwv ))
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I From the previous information we have

I Since we are guaranteed that the shortest path is at most
n− 1 edges the above recursive equation gives us an algorithm
to compute the shortest path by iterating of the length.

I Note that the values for step i is saved to be used later,
namely in step i + 1.

I This strategy of saving values instead of recomputing is called
Dynamic Programming.
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1 BELLMAN-FORD(G,s);
2 foreach v ∈ V do
3 d [0, v ] =∞
4 d [0, s] = 0
5 for i = 1, . . . , n do
6 d [i , v ] = min(d [i − 1, v ],minw∈V (d [i − 1,w ] + cvw ))
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Eulerian cycles

I A Eulerian path in a graph is a path from vertex u to vertex v
that uses every edge exactly once.

I A Eulerian cycle is a closed (i.e. u = v Eulerian path)
I Formally, a path v1, . . . , vk in a graph G = (V ,E ) is said to

be Eulerian iff

1. ∀e ∈ E ,∃i such that (vi−1, vi ) = e.
2. ∀i , j we have i 6= j ⇒ (vi−1, vi ) 6= (vj−1, vj).

Theorem
A graph G = (V ,E ) has a Eulerian cycle iff every vertex has even
degree
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Proof.

I (⇒) Assume that a Eulerian cycle, v1 . . . , vi−1, vi , vi+1, . . . , vk
exists. Consider an arbitrary vertex vi 6= 1, k. that occurs l
times in the path. Every time vi occurs it is of the form
vi−1, vi , vi+1 where (vi−1, vi ) ∈ E and (vi , vi+1) ∈ E which
means for every occurrence of vi in the path, two edges
(distinct by definition) are ”used”. The same reasoning
applies to v1 and vk since v1 = vk .

I (⇐)Assume that every vertex has an even degree. We
construct a Eulerian cycle as follows.

I Start at an arbitrary vertex u, and choose an unused edge
every time until you get back to u and there are no more
unused edges to choose from.

I Next we select a vertex v included in the previous ”walk” and
repeat until we get back to v .

I Finally, splicing the above closed paths gives us the Eulerian
cycle.
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I We still need to prove that when starting at vertex u and
choosing previously unused edges we get back to u.

I By way of contradiction assume that starting with vertex u we
get ”stuck” in vertex v 6= u. Let the followed path be
u, x1, . . . , xk , v .

I Every time v is visited (except the last) two edges of v are
used therefore an odd number of edges of v are used which is
a contradiction because every vertex was assumed to have an
even number of edges.
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