Data Structures

vectors,lists,stacks and queues

Hikmat Farhat

June 5, 2018
o = = = Do



Introduction

@ "Linear” Containers in C++. A C++ container " contains” a set of
objects. The objects can be of any type (the same).

Implemented in the STL in C++

But later we will implement our own version

This will allow us to assess complexity of operations.

A container of objects usually implements the following operations

> create: create the container.

> Add an element. The "position” where the element is added depends
on the type of container.

> erase: delete an item from a certain position or a range. Also depends
on the type of container

> empty: test wether the container is empty or not.

» find: search for the existence of an element in the container.

Hikmat Farhat Data Structures June 5, 2018 1/42



@ Since a container can store any type of elements we need to use
templates to define them.

#include <iostream>
template <typename T>
class MemCell {

T val;

public:

MemCell (T x){

val=x;
}

T getVal(){return val;}
void setVal(T x){val=x;}
H
int main(){

MemCell<int> m(10);

MemCell<std :: string> mm(" test");
m.setVal (23);

std :: cout<<m. getVal()<<std :: endl;
std :: cout<<mm. getVal()<<std :: endl;

Hikmat Farhat Data Structures June 5, 2018 2 /42




STL vector

@ One data structure provided by the Standard Template Library (STL)
is the vector class.

@ First we will use the STL vector class and see how it implements the
vector ADT.

@ A vector ADT is a suitable when

» Elements are added/deleted only from the end of the list
» Finding element at position k is used often and must be fast.

@ |t is fast in access elements at random positions

@ More importantly: a vector ADT is not suitable when we need to
add/remove the front element.

Hikmat Farhat Data Structures June 5, 2018 2 /42



Iterators

@ There are many times where we need to "iterate” through the
elements of a list.

We would like to do this regardless how the container is implemented.

A convenient way of doing this is for the container to supply us with
an iterators

An iterator is simply a pointer to an element of the list

An iterator supports increments methods and dereference operator to
retrieve the value it points to.

Hikmat Farhat Data Structures June 5, 2018 3 /42



Using Iterators to print all elements of vector

#include <iostream>
#include <vector>
#include <string>

int main(){

std :: vector<std ::string> v;
v.push_back (" first string");
v.push_back (" second string");
v.push_back (" third string");

std :: vector<std ::string >::iterator itr;

for(itr=v.begin();itrl=v.end();itr4++)
std :: cout<<xitr <<std :: endl;

Hikmat Farhat Data Structures June 5, 2018 4/ 42



Using Iterators to insert and remove elements

#include <iostream>

#include <vector>

#include <string>

int main(){
std :: vector<std ::string> v;
v.push_back(” first string"”);
v.push_back (" second string");
v.push_back (" third string");
std ::vector<std ::string >::iterator itr;
itr=v.begin ();
itr—++;
v.insert(itr " between 1 & 2");
itr=v.end();
itr —=2;
v.erase(itr);
for(itr=v.begin();itr!=v.end();itr++)

cout<<xitr <<endl;

return O;

Hikmat Farhat Data Structures

June 5, 2018

5/ 42



STL list class

A different implementation of the list ADT is the STL list
Unlike the vector class which uses an array for internal storage

the list is implemented as a linked list.

Unlike vector it provides an efficient implementation of push_front
and pop_front methods.

@ Unlike vector it does NOT provide an efficient implementation of
element at position k.

Hikmat Farhat Data Structures June 5, 2018 6 /42



Using STL list

#include <iostream>
#include <list >

using namespace std;

int main (int argc, const char * argv[]){
list <string> mylist;
mylist.push_front (" first element”);
mylist.push_back (" second element”);
mylist.push_front (" third element”);

list <string >::iterator itr;

for(itr=mylist.begin();itrl=mylist.end(); itr++)
cout<<xitr <<endl;

return 0;

}

Hikmat Farhat Data Structures June 5, 2018 7/ 42




Need for copy constructors

#include <iostream>

class IntCell{
int xval;
public:
IntCell(int x=0){
val=new int(x);

int getVal(){return xval;}
void setVal(int x){*xval=x;}

b

int main(){
IntCell a(10);
IntCell b=a;

a.setVal (20);
std :: cout<<a.getVal()<<std :: endl;
std :: cout<<b.getVal()<<std :: endl;

}

Hikmat Farhat Data Structures June 5, 2018

8/ 42



Need for copy constructor

@ The output for both a and b is 20. This is because the default copy
constructor copies element by element.

@ So instead of copying the value stored in a it copies the value of the
pointer.

@ We need to provide our own version of the copy constructor

IntCell(const IntCell & rhs){
val=new int(xrhs.val);

}

Hikmat Farhat Data Structures June 5, 2018 9 /42



Why a copy constructor?

@ A copy constructor is used by the compiler in the following cases

» When an argument is passed by value, a copy of the argument should
be made

» when a function returns a local object (not a pointer or reference to it),
an anonymous and temporary copy should be made to be returned to
the caller.

» when a object is initialized as: Type obj(initial_obj) then obj is made as
a copy of initial_obj using the copy constructor.

@ the compiler usually supplies a default copy constructor.

@ As we have seen when there is dynamic memory allocation this
default copy constructor does not work.

Hikmat Farhat Data Structures June 5, 2018 10 / 42



Vector interface

#ifndef list_vector_Vector_h
#define list_vector_Vector_h
template <typename Object>
class Vector
{ .

private:

int theSize;

int theCapacity;

Object = objects;

public:

explicit Vector(int initSize=0);
Vector( const Vector & rhs );

“Vector( );

const Vector & operator= ( const Vector & rhs );
void resize( int newCapacity );

Object & operator[]( int index );

bool empty( ) const;

int size( ) const;//how many elements?
int capacity( ) const;//total capacity
void push_back( const Object & x );
void pop_back( );

typedef Object % iterator;

iterator begin( );

iterator end( );

TR



Adding an element to Vector

template <typename Object>
void Vector<Object >::push_back( const Object & x )

if( theSize = theCapacity )
resize( 2 * theCapacity );
objects[ theSizet++ ] = x;

@ In the code above sometimes we need to call the expensive resize .

template <typename Object>
void Vector<Object >::resize( int newCapacity )

if ( newCapacity < theSize )
return;

Object xoldArray = objects;

objects = new Object[ newCapacity ];

for( int k = 0; k < theSize; ki+ )
objects[ k ] = oldArray[ k ];

theCapacity = newCapacity;
delete [ ] oldArray;

TG T



Vector Implementation

template <typename Object>
Vector<Object >::Vector(int initSize)
:theSize(initSize),theCapacity(initSize)
{ objects=new Object[theCapacity];}

template <typename Object>
Vector<Object >::Vector(const Vector<Object>& rhs):theSize(rhs.size()),
theCapacity (rhs.theCapacity)

{

objects = new Object[ capacity( ) ];
for( int k = 0; k < size( ); k++ )
objects|[ k ] = rhs.objects[ k |;

}

template <typename Object>
Vector<Object >::"Vector ()
{delete [] objects;}

template <typename Object>

if( this != &rhs )
delete [ ] objects;
theSize=rhs.size ();
theCapacity=rhs.capacity ();
objects=new Object[capacity ()];
for(int k=0;k<size ();k++)
objects[k]=rhs.objects [k];

return xthis;

}
Hikmat Farhat Data Structures June 5, 2018

const Vector<Object> & Vector<Object >::operator= ( const Vector<Object>& rhs ) {
{

13 / 42



Vector Implementation

template <typename Object>
void Vector<Object >::resize( int newCapacity )
{
if( newCapacity < theSize )
return;

Object *oldArray = objects;

objects = new Object[ newCapacity ];
for( int k = 0; k < theSize; kt++ )
objects|[ k ] = oldArray[ k ];

theCapacity = newCapacity;
delete [ ] oldArray;

}

template <typename Object>
Object & Vector<Object >::operator[]( int index )
{ return objects[ index ]; }

template <typename Object>
bool Vector<Object >::empty( ) const
{ return size( ) = 0;

Hikmat Farhat Data Structures

June 5, 2018

14 / 42



@ inserting elements in the vector is a costly operation because a whole
portion of the array needs to be copied.

@ the worst case happens when the insertion is done on the front.
@ This is why the vector class supports inserts at the end only.

@ Even in that case it becomes costly when we run out of space and we
need to increase the storage

@ check the method resize(int ) in our implementation of vector.

Hikmat Farhat Data Structures June 5, 2018 15 / 42



why a destructor?

When an object goes out of scope it is destroyed.
This is done by calling the destrcutor method.

if no destrcutor method is specified the compiler uses a default one.

If memory was allocating dynamically through a pointer, the default
destructor destroys the pointer and NOT the memory that the pointer
points to.

@ therefore when memory is allocated dynamically it should be
destroyed manually through the destructor.

Hikmat Farhat Data Structures June 5, 2018 16 / 42



Linked lists

@ We need to be able to change the size of the list dynamically. this is
not possible with an array implementation.
@ the implementation of insert and delete is very inefficient.

@ An implementation that satisfies the above two condition is a linked
list structure:

» Elements do not need to be store consecutively.
» But then we need to link the elements together.

Hikmat Farhat Data Structures June 5, 2018 17 / 42



@ A linked list is a sequence of nodes

@ Each node has two parts:

>

>
>
>
>

Data part: information stored in that particular node.

Next part: a link (pointer) to the next node.

We only need to have a pointer to the first node.
the next part of the last node is null.
In this case we use a doubly linked list where each node has a next and

prev pointers.

e INE

e

] - |

-

Hikmat Farhat Data Structures

June 5, 2018 18 / 42



Sentinel Node

@ For convenience, we use empty nodes, called sentinel, for head and
tail.
@ The first element in the list is the node just after the head.

@ The last element in the list is the node just before the tail.

b e ey

\ head tail /

Hikmat Farhat Data Structures June 5, 2018 19 / 42



Operations on Linked Lists

We would liked to have the following operations implemented on linked
lists.

create a list.
test if the list is empty.
display the list.

°
°

°

@ search for an item in the list.
@ delete an item from the list.

°

insert an item into the list.

Hikmat Farhat Data Structures June 5, 2018 20/ 42



@ Most operations will make use of an iterator
@ In this case an iterator will be a node with extra operations
o Like itr4+, itr—, itr=, itrl=, *itr

@ All elements of the list are also accessed through iterators

template <typename Object>
struct Node{
Object data;
Node xprev;
Node xnext;
Node( const Object & d=Object (), Node xp=NULL,
Node *n=NULL)

:data(d),prev(p),next(n){}

I

Hikmat Farhat Data Structures June 5, 2018 21/ 42



List interface

template <typename Object>
class List{

private:

int theSize;
Node<Object> xhead;
Node<Object> xtail;

void init( ) { //... }

public:

class iterator{
//code for iterator

here
¥
List(){//...}
List(const List &rhs){//...}
“List () {}

List & operator=(const List &rhs){//...

Hikmat Farhat Data Structures June 5, 2018 22 /42



List interface CONT

bool

iterator begin(){ //...}
iterator end() { //...}

int size() {//...}

empty () {//...}

void clear(){//... }
void push_front( const Object & x ){//...}
void push_back(const Object & x ){//...}
void pop-_front( ){ //...}
void pop_back( ){//...}
iterator insert( iterator itr, const Object & x ) { }
iterator erase( iterator itr ){ }
+s
June 5,2018 23 /42



[terator Class

class iterator{
protected:
Node<Object> xcurrent;
public:
iterator (){}
iterator (Node<Object> xp):current(p){}
Object & operator () {return current—>data;}
iterator & operator++(){
current=current—>next;
return xthis;

iterator & operator++(int in){
current=current—>next;
return xthis;

iterator & operator ——(){
current=current—>prev;
return xthis;

iterator & operator——(int in){
current=current—>prev;
return xthis;

bool operator==(const iterator & rhs) const
{return current=—rhs.current;}

bool operator!=(const iterator &rhs) const
{return !(current=rhs.current);}

friend class List<Object>;

}s

TRy



Empty list

@ Since we always have sentinel nodes an empty list has two nodes:
head and tail

M

head tail

Hikmat Farhat Data Structures June 5, 2018 25/ 42



beginning and end

@ The beginning and end are usually used differently

o for example
for(itr=list.begin();itr!=list.end();itr++)

@ In the code above, begin() should return the first element (i.e the one
after head)

@ Whereas end should return tail thus

iterator begin(){
return iterator (head—>next);
}

iterator end(){
return iterator(tail);
}

Hikmat Farhat Data Structures June 5, 2018 26 / 42



Inserting a Node

RENE
R NEES S

s

iterator insert( iterator itr, const Object & x )
{

Node sp=itr.current;

theSize++;

Node xnewNode=new Node(x,p—>prev,p);

p—>prev—>next=newNode;

p—>prev=newNode;

return iterator (newNode);

Hikmat Farhat Data Structures June 5, 2018 27 / 42



Deleting a node

'TL TL TL

iterator erase( iterator itr ){
Node xp=itr.current;
iterator ret(p—>next);
p—>prev—>next=p—>next;
p—>next—>prev=p—>prev;
delete p;
theSize ——;
return ret;

TRy



List Destructor

@ Every time we add a node to the list we allocate additional memory.

@ When the list is out of scope and need to be destroyed, dynamically
allocated memory is not destroyed automatically.

@ Therefore we need to provide an explicit destructor for the
dynamically allocated memory.

@ Similarly we need to provide a copy constructor and define an
"assignment” operator.

Hikmat Farhat Data Structures June 5, 2018 29 /42



“List ()]
clear ();
delete head;
delete tail;

void clear (){
while (lempty ()

)
erase(begin());
}

o & = Q>
Hikmat Farhat Data Structures




Difference between vector and list

@ Vector

> Insertion and deletion are ©(n)
> Direct access is ©(1)

@ Linked list

> Insertion and deletion are ©(1)
» Direct access is ©(n)

TR



Stack ADT

@ Operations are

» push to put a new element at the top

@ A stack is a list of elements where only the top element is accessible
> pop to remove the top element

top

=] = = E A
Hikmat Farhat Data Structures



Stack implementation

@ We can use linked list but since insertion and deletion is done only at
the top it is better to use an array
@ Since only the top of the stack is accessible, insertion and deletion is
done efficiently
@ We need the following operations top(),push(),pop()
@ The stack has :
> capacity
> top of stack
> array of objects

Hikmat Farhat Data Structures June 5, 2018 33 /42



Stack Interface

template <typename Object>
class Stack
{ .
private:
int topOfStack;
int theCapacity;
Object * objects;
void reserve( int newCapacity );
public:
Stack(int capacity=16):theCapacity(capacity)

topOfStack=-1;
objects=new Object[theCapacity];

}

Hikmat Farhat Data Structures

June 5, 2018

34/ 42



Stack Interface cont.

int capacity(){return theCapacity;}

Stack( const Stack & rhs ){

if(this != &rhs){
theCapacity=rhs.theCapacity;
topOfStack=rhs.topOfStack;
objects=new Object[theCapacity];
for(int i=0;i<theCapacity;i++)
objects[i]=rhs.objects[i];

}

}

int size( ) const{
return topOfStack+1;

}
“Stack( ){

delete [] objects;
}

Stack & operator= ( const Stack & rhs );//defined later

Hikmat Farhat Data Structures June 5, 2018

35/ 42



Stack Interace cont.

void push(const Object & x){
if ( topOfStack== theCapacity -1 )
reserve( 2 % theCapacity + 1 );

objects[++topOfStack]=x;

void pop(){
if (lempty())
topOfStack ——;

}
Object top(){
return objects[topOfStack];
}

b

Hikmat Farhat Data Structures June 5, 2018

36 / 42



Assignment Operator

template <typename Object>
Stack<Object> & Stack<Object >::operator=
( const Stack<Object>& rhs )
{
if( this != &rhs )
{
delete [ ] objects;
topOfStack = rhs.size( )—1,;
theCapacity = rhs.theCapacity;
objects = new Object|[ theCapacity ];
for( int k = 0; k < size( ); k++ )
objects[ k | = rhs.objects| k ];
}
return *xthis;
}

Hikmat Farhat Data Structures

June 5, 2018

37 / 42



Stack Application: Postfix Calculator

@ "regular’ expressions are called infix expressions:
17+3 x5
@ is interpreted as:
174 (3 %5)

@ because * has higher precedence than +.

@ Postfix expressions are easier to evaluate because we don't need to
remember precedence rules. The above in postfix notation is

35%17+

Hikmat Farhat Data Structures June 5, 2018 38 /42



@ A postfix calculator can be implemented using a stack as follows

@ If a number is read then it is pushed on the stack.
@ when an operator is read then
@ the appropriate number of arguments (usually two) are poped from the
stack.
@ the operator is applied to the arguments
© The results is pushed back onto the stack.

@ Example, evaluate 6 523 +8* + 3 + *

Hikmat Farhat Data Structures June 5, 2018 39 /42



Queue ADT

@ The basic operations on a Queue are

© Enqueue to add an element to the end of a list
@ Dequeue to return ( and remove) the front element of a list

@ This why sometimes it is called First in First Out (FIFO).

dequeue

Hikmat Farhat Data Structures

Queue

enqueue

June 5, 2018

40/ 42



Array Implementation of Queue ADT

@ A queue can be implemented using an array by maintaining two
values

» front that points to the first element
» back that points to end of the queue (last+1).

R



EEEEEEE
Initially 0 0
front back
T[T 5 1307
After enqueue(7) 0 0
back front
[ 1[5 37
After enqueue(12) 0 0
back front
B[ [ 5] 317
After dequeue() 0 0
back front

TRy



	Introduction
	Class templates
	STL vector and list
	Need for opy constructors

