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Introduction

A tree is a collection of nodes defined recursively as
I A root node connected to zero or more subtrees by an edge
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If R is the root of the tree then the root of each subtree is called the
child of R.

R is called the parent of the root of each subtree.

Using the recursive definition we can deduce that a tree with N nodes
has N − 1 edges since each node, expect the root, has exactly one
parent.

Each node of the tree can have 0 or more children.

A node that has 0 children is called a leaf

Nodes that have the same parent are called siblings
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A sequence of nodes n1, . . . nk with ni being the parent of ni+1 is
called a path from n1 to nk .

The length of a path is the number of edges on the path.

For any node ni the depth of ni is the length of the unique path from
the root to ni .

The height of a node ni is the length of the longest path from ni to a
leaf.
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Example

Node E has depth 1 and height 2

The parent of E is A.

Nodes B,C ,D, E , F and G are siblings.

Note that the depth of the root, A is 0.
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Traversal of Trees

The nodes of a tree can be processed in three ways
1 Preorder: each node is processed before its children.
2 Postorder: each node is processed after its children.
3 Inorder (in the case of a binary tree): left child is processed first, then

the node then the right child.
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Preorder Traversal

Output

usr
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Preorder Traversal
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Postorder Traversal

Output
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Recursive Implementation

v o i d p o s t o r d e r ( Node ∗ t ){
i f ( t==NULL) r e t u r n ;
p o s t o r d e r ( t−> l e f t ) ;
p o s t o r d e r ( t−>r i g h t ) ;
cout<<t−>data<<e n d l ;

}
v o i d p r e o r d e r ( Node ∗ t ){

i f ( t==NULL) r e t u r n ;
cout<<t−>data<<e n d l ;
p r e o r d e r ( t−> l e f t ) ;
p r e o r d e r ( t−>r i g h t ) ;

}
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Binary Trees

A binary tree is a tree in which no node can have more than two
children.

The height of a tree is equal to the height of its root.

The depth of a tree is equal to the depth of its deepest leaf which is
equal to the height of the tree.

The depth of an average (random) binary tree of N nodes is O(
√
N)

A complete binary tree is a tree in which all levels are full with the
possible exception of the last level where the nodes are to the left.

A full binary tree is a binary tree in which each node is either a leaf or
has exactly two children.

A Perfect binary tree is a tree that is full and all leaves have the
same depth.
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Inorder Traversal of BT

v o i d i n o r d e r ( Node ∗ t ){
i f ( t==NULL) r e t u r n ;
i n o r d e r ( t−> l e f t ) ;
cout<<t−>data<<e n d l ;
i n o r d e r ( t−>r i g h t ) ;

}
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Binary Search Tree

A binary search tree is a binary tree with a special property

for every node X the values of the nodes to the left of X are smaller
than the value of X and the ones to the right of X are larger than the
value of X .

the average height of a binary search tree with N nodes is O(logN).
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Example

Figure : Left tree is a BST the right is not
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Why are BST important?

Because it is fast to find an element in the tree.

if we are looking for value x and reach node y
I If x > y we go right
I If x < y then we proceed to the left

Similarly it is fast to find the minimum and maximum of a collection.
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BST interface

BST( cons t Comparable &x ){
r o o t=new Node ( x ,NULL ,NULL ) ;

}
i n t numNodes ( ) ;
i n t numLeaves ( ) ;
v o i d i n s e r t ( con s t Comparable & x ) ;
vo i d remove ( con s t Comparable & x ) ;
Comparable f i ndMin ( ) ;
Comparable f indMax ( ) ;
i n t h e i g h t ( ) ;
v o i d p r i n t ( ) ;
v o i d p r i n t P r e o r d e r ( ){ p r i n t P r e o r d e r ( r o o t ) ; }
vo i d p r i n t P o s t o r d e r ( ){ p r i n t P o s t o r d e r ( r oo t ) ; }
vo i d p r i n t I n o r d e r ( ){ p r i n t I n o r d e r ( r oo t ) ; }
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BST interface

p r i v a t e :
s t r u c t Node {

Node ∗ l e f t ;
Node ∗ r i g h t ;
Comparable data ;
Node ( con s t Comparable &x , Node ∗ l , Node ∗ r )
: data ( x ) , l e f t ( l ) , r i g h t ( r ){}

} ;
Node ∗ r o o t ;
v o i d p r i n t (Node ∗n , i n t l e v e l ) ;
v o i d i n s e r t ( con s t Comparable &x , Node ∗ &t ) ;
vo i d remove ( con s t Comparable &x , Node ∗ & t ) ;
vo i d p r i n t P r e o r d e r (Node ∗n ) ;
vo i d p r i n t P o s t o r d e r (Node ∗n ) ;
vo i d p r i n t I n o r d e r (Node ∗n ) ;
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BST interface

Node ∗ f i n d M i n ( Node ∗ t ) ;
Node ∗ f indMax ( Node ∗ t ) ;
i n t h e i g h t ( Node ∗ t ) ;
i n t numNodes ( Node ∗ t ) ;
i n t numLeaves ( Node ∗ t ) ;
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Finding a Value in a BST

To find a value compare the current note with that value:
I If the node is null return false, otherwise
I If the value is equal to the node’s value return true
I If the value is less than the node’s value then check the left child
I If the value is more than the node’s value then check the right child
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Example Search

?
= 3
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Inserting an Element

Inserting an element is similar to ”finding” an element.
I if the value to be inserted is less than the current node go left
I If the value to be inserted is more than the current node go right
I Keep doing this until the node to be compared does not exist then

create one.

Hikmat Farhat Data Structures June 27, 2018 20 / 85



Example Insert

?
= 5
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Example Insert
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Inserting An Element

t emp la t e <typename Comparable>
vo i d BST<Comparable > : : i n s e r t ( con s t Comparable &x ) {

i n s e r t ( x , r o o t ) ;
}
t emp la t e <typename Comparable>
vo i d BST<Comparable > : : i n s e r t ( con s t Comparable &x , Node ∗ &t )
{

i f ( t==NULL){
t=new Node ( x ,NULL ,NULL ) ;

}
e l s e i f ( x< t−>data ){

i n s e r t ( x , t−> l e f t ) ;
}
e l s e {

i n s e r t ( x , t−>r i g h t ) ;
}
r e t u r n ;

}
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Deleting An Element

When deleting a node there are three cases to consider
1 If the node is a leaf just delete it.
2 If a node has a single child, that child replaces the node
3 If a node has two children, the node is replaced by the smallest node

of the right subtree (or the largest node of the left subtree) and that
node (which has a maximum of one child) is deleted .

Hikmat Farhat Data Structures June 27, 2018 23 / 85



Deleting a node(Value=4) with one child
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Deleting a node (Value=2) with two children
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Deleting An Element

t emp la t e <typename Comparable>
vo i d BST<Comparable > : : remove ( con s t Comparable &x , Node ∗ &t ){

i f ( t==NULL) r e t u r n ;
i f ( x<t−>data ) remove ( x , t−> l e f t ) ;
e l s e i f ( x> t−>data ) remove ( x , t−>r i g h t ) ;
/∗ found the node ∗/
e l s e i f ( t−> l e f t !=NULL && t−>r i g h t !=NULL){

t−>data=f indMin ( t−>r i g h t )−>data ;
remove ( t−>data , t−>r i g h t ) ;

}
e l s e {

Node ∗oldNode=t ;
t=(t−> l e f t !=NULL)? t−> l e f t : t−>r i g h t ;
d e l e t e oldNode ;

}
}

Hikmat Farhat Data Structures June 27, 2018 26 / 85



AVL Trees

An Adelson-Velskii and Landis tree is a binary search tree with a
balance condition

We have seen that all operations on a binary search trees of height h
are O(h).

We have also seen that, on average, the height of a BST is log n
where n is the number of nodes

so the average complexity of most operations is O(log n)

For some trees the worst-case complexity is O(n)
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Worst-case Height
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AVL balance condition

Given a binary search tree and node X .

Let hL be the height of the left subtree of X .

Let hR be the height of the right subtree of X .

To make sure that h = O(log n) we keep the balance condition

For every node X we always have

| hL − hR |≤ 1
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Example AVL

Figure : Two BSTs. Only the left is an AVL tree. In the tree to the right,
h(8)=0, h(2)=2

Hikmat Farhat Data Structures June 27, 2018 30 / 85



Insertion/Deletion

Inserting or deleting a node from an AVL tree might destroy the AVL
property.

To restore the AVL property we need to perform rotations

We will study two types of rotations:
1 Single rotation
2 Double rotation
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Example Insertion

Figure : Inserting Node 6 destroys AVL property
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Example Single Rotation

Figure : Example single rotation
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Single Rotation

Insertion into the left subtree of the left child

Insertion into the right subtree of the right child

Hikmat Farhat Data Structures June 27, 2018 34 / 85



Need for double rotation

Figure : Single rotation does not work in all cases
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Double Rotation

Insertion into the right subtree of the left child

Insertion into the left subtree of the right child
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General Rules

The rules for balancing an unbalanced node n in an AVL trees are as
follows

1 if the unbalance is in the left of the left node L then do a single
clock-wise rotation of n.

2 if the unbalance is in the right of the left node L then do a single
counter clock-wise rotation of the left child L followed by a clock-wise
rotation of n.

3 if the unbalance is in the left of the right node R then do a single
clock-wise rotation of the right node R followed by a counter
clock-wise rotation of n.

4 if the unbalance is in the right of the right node R then do a single
counter clock-wise rotation of n.
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Height of tree after rotation

Consider what happens to a tree after rotation. Suppose that an
imbalance was caused by an insertion.

Let x be the deepest node having imbalance due to the insertion and
let y and z be,respectively the roots of the right and left subtrees of x .

Imbalance at x means the difference in height between y and z is 2.

Since insertion caused an imbalance then before insertion we had
hz = h, hy = h + 1 and hx = h + 2.

After insertion the height of y increased by 1 but did not cause an
imbalance at y then if u and v are the roots of the left and right
subtrees of y then before insertion hu = hv = h.

The above is illustrated in the figure below
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Before Insertion

zh y h+1

u hvh

p

x h+2

Figure :
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We will show that after rotation (single or double) at node x the tree
will have no further imbalance.

This is done by showing that after rotation (single or double) at node
x the height of the child of node p is h + 2 which is exactly the height
of x before insertion.
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After Insertion but before rotation,case 1: single rotation

zh y h+2

u h+1vh

p

x h+3

Figure :
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After rotation,case 1: single rotation

zh

x h+1 u h+1

vh

p

y h+2

Figure :
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After Insertion but before rotation,case 2: double rotation

zh y h+2

u h

T1 T2

vh+1

p

x h+3

Figure :
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After Insertion and rotation,case 2: double rotation

zh

xh+1 y h+1

u h
T1 T2

vh+2

p

Figure :
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Imbalance caused by deletion

The case of deletion in an AVL tree is different from insertion.

Whereas for the case of insertion fixing the imbalance at the deepest
node will fix all other imbalances as we have shown the case for
deletion is different

Below we show an AVL before deletion, after deletion and after
rotation. The example will show that we need to do rotations to the
ancestors of the deepest node in addition to the rotation at the node
itself.
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AVL before deletion

50

40 60

7055

80

30 45

25 35 42

20

Figure :
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If node 55 is deleted it creates an imbalance at 60 which is the
deepest imbalance. A single rotation will fix that imbalance and we
obtain the tree below which has an imbalance at 50.

50

40 70

806030 45

25 35 42

20

Figure :
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Height of AVL trees

Let Th be the smallest AVL tree of height h and let Nh be the
number of nodes in Th.

Let L and R be the left and right subtrees of Lh respectively. Since Th

is the smallest AVL then the height of L and R cannot be the same.

Then the height of L is h − 2 and height of R is h − 1. In addition L
is the smallest AVL of height h − 2 and similarly for R.

This allow us to obtain the relation

Nh = Nh−2 + Nn−1 + 1

Adding one to both sides and letting Nh = Nh + 1 we get

Nh = Nh−1 +Nh−2

The above is the recurrence relation for the Fibonacci numbers.
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Note: while Nh satisfies the Fibonacci recurrence it does not mean
they are the same since the base cases are different.

For example: N0 = 2,N1 = 3 while F0 = 0 and F1 = 1.

We can get an upper bound on the height of the minimal AVL using

the golden ration φ = 1+
√
5

2

φ2 =

(
1 +
√

5

2

)2

=
1 + 5 + 2 ·

√
5

4

=
3 +
√

5

2

= 1 +
1 +
√

5

2
= 1 + φ
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We prove by induction that Nh ≥ φh − 1.

Base case N0 = 1 > φ0 − 1 = 0, N1 = 2 > φ1 − 1 = 1.62− 1 = 0.62

Hypothesis: Assume that Nh ≥ φh − 1.

Induction step using the recurrence

Nh+1 = 1 + Nh + Nh−1

> φh + φh−1 − 1

> φh−1(φ+ 1)− 1

> φh−1φ2 − 1

> φh+1 − 1
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When Nh is large we drop the -1 term and take the log of both sides

h log φ < logNh

h <
1

log φ
logNh

h < 1.44 logNh

Since Nh is the smallest number of nodes in AVL of height h then for
any AVL of height h we have

h = O(log nh)
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B-Trees

The need for B-trees arises from the fact that many systems store
their data in secondary storage such as disks.

To see the need for B-trees let us recall how AVL (or BST) search for
data while making disk access explicit using a fictitious function
read-from-disk

1 b o o l s e a r c h ( i n t x , Node ∗ t ){
2 i f ( x==t−>v a l ) r e t u r n t r u e ;
3 i f ( x<v a l ){
4 n=read−from−d i s k ( t−> l e f t ) ;
5 r e t u r n s e a r c h ( x , n ) ;
6 }
7 e l s e {
8 n=read−from−d i s k ( t−>r i g h t ) ;
9 r e t u r n s e a r c h ( x , n ) ;

10 }
11 }
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B-Trees

Since CPU operations (like comparison) are order of magnitudes
faster than disk access we would like to minimize disk access even at
the expense of more CPU operations

The above strategy is what makes B-Trees attractive, minimize the
height of the tree (which minimizes disk access) at the expense of
more comparisons (faster operations).

A B-Tree stores more data per node at the expense of extra CPU
operations.
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Example B-Tree

40

20 60 75

10 15 30 50 65 80 90 100
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B-Trees

Every node in a B-tree has a variable number of keys (see below)
stored in a non-decreasing order.

If an internal node has n keys it would have n + 1 pointers to children.

All leaves have the same depth which is equal to the height of the
tree.

The range of the number of keys is determined by the minimum
degree of the tree t.

1 Every node other than the root has at least t − 1 keys and at most
2t − 1 keys.

2 The above means it has at least t children and at most 2t children.
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Searching in B-tree

Since the number of keys is variable it is stored in the node. Given
node a then a.n is the number of keys.

The search for value x in a B-tree is done recursively.

We start at the root and compare x with the keys (left to right)
stored in the root node

if x matches any key then it is found.

If ki < x < ki+1 then the next node to consider is the one pointed to
by ci+1.
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B-tree Search

B-T-Search (a,x)
i ← 1
while i ≤ a.n and x > a.ki do

i ← i + 1
if i ≤ a.n and x = a.ki then

return True
else if a.leaf then

return False
else

Read-disk(a.ci )
return B-T-Search (a.ci ,x)
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B-Tree Insertion

Insertion into a B-tree is much more complicated than a BST

Insertion of values in a B-Tree is done at the leaves.

To find the proper leaf a recursive descent, starting from the root, is
performed as in the case of search.

While descending the tree if a node is full it is split in two.
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B-Tree Insertion

Consider the insertion of the value 55 in the tree below
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Starting from the root we compare 55 > 20 so the next node to
consider is [40,60,80]

Since 40 < 55 < 60 then the value 50 will be inserted in the leaf [50].

But before descending to node [40, 60, 80], which is full, it is split into
two and then the descent continues

Hikmat Farhat Data Structures June 27, 2018 60 / 85



After splitting the node [40, 60, 80] in two the value 55 is inserted in
the appropriate leaf as shown below
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Node Splitting
A node is split when it is full, i.e. number of keys= 2t − 1.
The median key at index t will be ”promoted” to the parent node
The other keys: from index 1 to t − 1 are moved to a newly created
node and the remaining keys from t + 1 to 2t − 1 remain in the
original node

k1 . . . kt−1ktkt+1 . . . k2t−1 yz

x

y is a full child of x with 2t − 1 keys.

t − 1 keys are moved to a newly created node z .

and key kt is moved to x .
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Node splitting

B-T-Split-Child (x,i)/* split child i of node x */

i ← 1
while i ≤ a.n and x > a.ki do

i ← i + 1
if i ≤ a.n and x = a.ki then

return True
else if a.leaf then

return False
else

Read-disk(a.ci )
return B-T-Search (a.ci ,x)
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Priority Queue

A priority queue is an ADT that allows for at least two operations
1 insert to add an element to the queue which is equivalent to enqueue
2 deleteMin (or deleteMax) which finds and returns and deletes the

minimum (or maximum) value. This is equivalent to the dequeue
operation.
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Simple Implementation

A simple implementation of a priority queue can be done using a
linked list

1 insertion is done at the head (or tail if we keep track of it) of the list in
O(1)

2 deleteMin can be done in O(n).

A better way would be to use a binary Heap.
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Binary Heap

A binary heap is a binary tree of height h where the subtree of height
h − 1 is perfect.

This means that all levels, with the possible exception of the bottom
one, are completely filled.

Figure : Binary Heap Example
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It is easily shown that the number of nodes n of a binary heap of
height h is 2h ≤ n ≤ 2h+1 − 1 nodes

This means that all operations are O(log n).

Because of this regularity of a binary heap it can be represented as an
array

For node at element i its left child is at 2i and right child is at 2i + 1
and its parent is at bi/2c

Figure : Array representation of binary heap
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Heap Order Property

To implement a priority queue efficiently we require that our structure
obeys the heap order property

In a heap, for every node X the value of X is smaller than the
value of its children

If this property is true for all nodes than the minimum is the root

Figure : Left is a heap. Right is not
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Inserting an Element

Obviously inserting an element can destroy the heap property.

To keep the heap property after insertion we add an element in two
steps:

1 The element is inserted at the first empty position
2 We recursively compare the inserted element with its parents:

F If it is smaller it is swapped with its parent.
F otherwise we stop.

3 The above operation, which is called percolated up, has a worst-case
complexity of O(h).

4 Since in a binary heap h = Θ(log n) then the complexity is O(log n).
5 As an example in the next slides we insert element with value 14.
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Example

14

14
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Implementation

v o i d i n s e r t ( i n t v a l ){
A[++ s i z e ]= v a l ;
i n t h o l e=s i z e ;
w h i l e ( h o l e /2>=1){

i f ( v a l<A [ h o l e / 2 ] ){
A [ h o l e ]=A [ h o l e / 2 ] ;
h o l e=h o l e / 2 ;

}
e l s e

b r e a k ;
}
A [ h o l e ]= v a l ;

}
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Heap Insert Example
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Deleting Minimum

As mentioned before one of the min-heap operations is deleteMin()
which returns, and deletes, the minimum of the heap.

This will leave a hole in the root of the tree.

By the min-heap property the root of any subtree contains the
minimum of that subtree.

Therefore when the root is removed the minimum of its two children
will replace it.

This will leave a hole in the place of the chosen child.

Doing the above recursively will make the hole trickle, or percolate,
down.
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DeleteMin: Take 1

h o l e =1;
w h i l e (2∗ ho le<=s i z e ){

c h i l d =2∗h o l e ;
i f (A [ c h i l d +1]<A [ c h i l d ] ) c h i l d ++;

A [ h o l e ]=A [ c h i l d ] ;
h o l e=c h i l d ;
}

The above code will leave a hole in one of the leaves which breaks the
heap property.

We can fill it with the last element of the heap and reduce the size by
one. Does it work?
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Does it always work?

No! Consider the case below and the result when 13 is deleted

13

14 16

19 21 19 68

65 26 32 24

⇓
14

19 16

26 21 19 68

65 24 32

Hikmat Farhat Data Structures June 27, 2018 76 / 85



DeleteMin: Take 2, percolateDown

To fix the problem we need to check if the ”promoted” value is larger
than the last value.

h o l e =1;
l a s t=A [ s i z e ] ;

w h i l e (2∗ ho le<=s i z e ){
c h i l d =2∗h o l e ;
i f (A [ c h i l d +1]<A [ c h i l d ] ) c h i l d ++;
i f (A [ c h i l d ]< l a s t ){
A [ h o l e ]=A [ c h i l d ] ;
h o l e=c h i l d ;
}
e l s e {

A [ h o l e ]= l a s t ;
b r e a k ;

}
}
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Building a Heap

One way of building a heap is by using repeatedly inserting elements.

Since insertion is O(log n) then to insert n elements it takes
O(n log n).

We can do better if we need to build a heap with n elements without
any operations in between.

The idea is first to add the elements in an unordered way.

Then use the percolateDown() method defined earlier to reorder the
heap.
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Figure : Left: initial heap. Right:after percolate(7)

Figure : Left: after percolate(6). Right:after percolate(5)
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Figure : Left: after percolate(4). Right:after percolate(3)

Figure : Left: after percolate(2). Right:after percolate(1)
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Implementation

BinaryHeap ( v e c t o r<i n t> & i t e m s )
: A( i t e m s . s i z e ()+1) , s i z e ( i t e m s . s i z e ( ) ){

f o r ( i n t i =0; i<i t e m s . s i z e ( ) ; i ++)
A [ i +1]= i t e m s [ i ] ;

b u i l d H e a p ( ) ;
}

v o i d b u i l d H e a p ( ){
f o r ( i n t i=s i z e / 2 ; i >0; i−−)

perco lateDown ( i ) ;
}
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Complexity of BuildHeap

Is build heap more efficient than using insert?

We will show that building the heap this way is O(n) whereas using
insert as we have seen is O(n log n).

First observe that the complexity of each percolation operation is
bounded by the height of the starting node.

Therefore the total complexity of building a heap of height h is the
sum of the heights of all nodes.
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In a full binary tree the number of nodes at depth d is 2d .

on the other hand, a node with depth d has height h − d

therefore the sum of the height of all nodes is

H =
h∑

d=0

2d(h − d)

= h + 2(h − 1) + 4(h − 2) + 8(h − 3) + . . .+ 2h−1 · 1

Multiplying the above by 2 and compare H and 2H

H = h + 2(h − 1) + 4(h − 2) + 8(h − 3) + . . .+ 2h−1 · 1
↗ ↗ ↗

2H = 2h + 4(h − 1) + 8(h − 2) + 16(h − 3) + . . .+ 2h−1 · 2 + 2h · 1

By subtracting the expression of H from 2H we get
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H = −h + 2 + 4 + 8 + . . .+ 2h−1 + 2h

= −(h + 1) + (1 + 2 + 4 + . . .+ 2h)

= −(h + 1) + (2h+1 − 1)

Therefore the complexity of build heap is O(2h) = O(n)
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Application: k th smallest element

Suppose that we have n numbers and we would like to find the kth

smallest.

One way is to build a heap with n numbers with complexity O(n) and
call deleteMin k times with a complexity of k log n.

The total complexity is O(n + k log n) which depends on k.

If k is small compared to n, i.e. k = O(n/ log n) then the complexity
is O(n)

other wise the complexity is O(n log n).

Finally if k = n and we store the results of deleteMin in, say, an array,
we would have sorted n elements in O(n log n).
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